
ClustKNN: A Highly Scalable Hybrid Model- &
Memory-Based CF Algorithm

Al Mamunur Rashid, Shyong K. Lam, George Karypis, and John Riedl
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

{arashid, lam, karypis, riedl}@cs.umn.edu

ABSTRACT
Collaborative Filtering (CF)-based recommender systems
are indispensable tools to find items of interest from the
unmanageable number of available items. Moreover, com-
panies who deploy a CF-based recommender system may be
able to increase revenue by drawing customers’ attention to
items that they are likely to buy. However, the sheer num-
ber of customers and items typical in e-commerce systems
demand specially designed CF algorithms that can grace-
fully cope with the vast size of the data. Many algorithms
proposed thus far, where the principal concern is recom-
mendation quality, may be too expensive to operate in a
large-scale system. We propose ClustKnn, a simple and
intuitive algorithm that is well suited for large data sets.
The method first compresses data tremendously by build-
ing a straightforward but efficient clustering model. Rec-
ommendations are then generated quickly by using a simple
Nearest Neighbor-based approach. We demonstrate the
feasibility of ClustKnn both analytically and empirically.
We also show, by comparing with a number of other pop-
ular CF algorithms that, apart from being highly scalable
and intuitive, ClustKnn provides very good recommenda-
tion accuracy as well.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering ; I.5.3 [Pattern
Recognition]: Clustering—Algorithms

General Terms
Algorithms, Experimentation

Keywords
Collaborative filtering, personalization, recommender sys-
tems, clustering, machine learning, data mining.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WEBKDD ’06, August 20, 2006, Philadelphia, Pennsylvania, USA
Copyright 2006 ACM 1-59593-444-8 ...$5.00.

1. INTRODUCTION
The amount of content available on the web today is

tremendous. The English version of the online encyclopedia
Wikipedia contains more than 1.1 million articles. Flickr, a
popular photo sharing service, has about 130 million pho-
tos1. The blog search engine Technorati has over 41 million
blogs and 2.5 billion links in its index. This is far too much
content for any person to consume, and is, in a nutshell, the
problem of information overload. To help solve this prob-
lem, people need tools to help them decide what items might
be worthwhile to look at. One effective tool for this task is
a recommender system. These systems suggest items that a
user might be interested based on her preferences, observed
behaviors, and information about the items themselves.

An example of a recommender system in use is the person-
alized internet radio station last.fm2, which chooses songs to
play for a user based on the songs and artists that she has
listened to and expressed opinions about in the past. An-
other example is MovieLens3, a movie recommender that
uses peoples’ opinions about movies to recommend other
movies that users might enjoy watching.

Collaborative Filtering. Recommender systems are of-
ten implemented using an automated collaborative filtering
(ACF, or CF) algorithm. These algorithms produce recom-
mendations based on the intuition that similar users have
similar tastes. That is, people who you share common likes
and dislikes with are likely to be a good source for rec-
ommendations. Numerous CF algorithms have been devel-
oped over the past fifteen years, each of which approach the
problem from a different angle, including similarity between
users[19], similarity between items[22], personality diagno-
sis[18], Bayesian networks[2], and singular value decompo-
sition[24]. These algorithms have distinguishing qualities
with respect to evaluation metrics such as recommendation
accuracy, speed, and level of personalization.

When deciding which algorithm to use in a system, one
key factor to consider is the algorithm’s ability to scale given
the size of the data. In systems with millions of items and
possibly tens of millions of users, the number of CF algo-
rithms that are practically able to produce quality recom-
mendations in real time is limited. Even with costs of com-
modity hardware falling rapidly, a brute-force approach may
be prohibitively expensive. Tradeoffs between speed and
recommendation accuracy often need to be made, and the

1http://time.com/time/magazine/article/
0,9171,1186931,00.html
2http://last.fm
3http://www.movielens.umn.edu

problem of developing highly scalable algorithms continues
to be an interesting problem.

Efficient and Scalable CF Algorithms. Yu et al. note
in [30] that there has been relatively little work in studying
the efficiency of CF algorithms and developing algorithms
that do not have either extremely expensive precomputa-
tion time or slow online performance. Linden et al. explore
the suitability of several algorithms for use on the Ama-
zon.com web site and conclude that algorithms based on
similarity between items are the best choice for a system of
their size[14]. They consider algorithms based on clustering
techniques, but dismiss those algorithms on the premise that
they produce poor recommendation quality. However, other
researchers have found that using clustering techniques can
indeed lead to good recommendations[4, 29, 21, 13]. The al-
gorithm proposed in this paper is based on classical cluster-
ing methods, and based on our results, we also believe that
using clustering is a viable way to increase efficiency and
scalability while maintaining good recommendation quality.
A more in-depth summary of previous work in applying clus-
tering methods to collaborative filtering can be found in [13].

Contributions. In this paper, we propose ClustKnn,
a hybrid memory and model-based CF algorithm based on
clustering techniques, as a way to overcome this scalability
challenge. By applying complexity analysis, we analyically
demonstrate the performance advantages that ClustKnn
has over traditional CF algorithms. In addition, we present
empirical measurements of the performance and recommen-
dation accuracy of ClustKnn and several other algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the general framework in which CF algo-
rithms operate in, and further discusses the problem that
we are solving. Section 3 describes our proposed approach
in detail. Section 4 outlines several other well-known CF
algorithms that we compare our approach to. The results
of our comparison are presented in section 5 and discussed
in section 6. Finally, we conclude in section 7 with a brief
discussion of future work.

2. THE PROBLEM DOMAIN
A collaborative filtering domain consists of a set of n cus-

tomers or users {u1, u2, . . . , un}, a set of m products or items
{a1, a2, . . . , am}, and users’ preferences on items. Typically,
each user only expresses her preferences for a small number
of items. In other words, the corresponding user × item
matrix is very sparse.

Users’ preferences can be in terms of explicit ratings on
some scale including a binary like/dislike, or they can be
implicit—for example, a customer’s purchase history, or her
browsing patterns. A recommender system may also main-
tain demographic and other information about the users,
and information about item features such as actors, direc-
tors, and genres in the case of a movie. This additional con-
tent information can be used to create content-based filtering
[16, 20], which can help improve a CF system, particularly
where rating data is limited or absent (e.g., newly introduced
items). In this paper we consider CF systems consisting of
explicit numerical ratings and no content information.

Next we address two semantically different types of rec-
ommendations. A CF recommender system can produce two
forms of recommendations on the items the target user has
not already rated: a) predicted ratings on the items, and b)
an ordered list of items the user might like the most. The

latter type of recommendations is sometimes referred to as
top-N recommendations [24, 22]. Note that a top-N list can
be trivially constructed by first computing rating predictions
on all items not yet rated, and then sorting the result and
keeping the top N . We study both types of recommendation
in this paper.

We now turn to the problem statement. An e-commerce
recommender system may easily involve millions of customers
and products [14]. This amount of data poses a great chal-
lenge to the CF algorithms in that the recommendations
need to be generated in real-time. Furthermore, the algo-
rithm also has to cope with a steady influx of new users and
items. For the majority of the algorithms proposed to date,
the primary emphasis has been given into improving recom-
mendation accuracy. While accuracy is certainly important
and can affect the profitability of the company, the operator
simply cannot deploy the system if it does not scale to the
vast data of the site.

3. PROPOSED APPROACH
In [2], Breese et al. introduce a classification of CF algo-

rithms that divides them into two broad classes: memory-
based algorithms and model-based algorithms. Here, we
briefly discuss each of these and describe how our approach
leverages the advantages of both types of algorithms.

A memory-based algorithm such as User-based KNN [19]
utilizes the entire database of user preferences when comput-
ing recommendations. These algorithms tend to be simple
to implement and require little to no training cost. They
can also easily take new preference data into account. How-
ever, their online performance tends to be slow as the size of
the user and item sets grow, which makes these algorithms
as stated in the literature unsuitable in large systems. One
workaround is to only consider a subset of the preference
data in the calculation, but doing this can reduce both rec-
ommendation quality and the number of items that can be
recommended due to data being omitted from the calcu-
lation. Another workaround is to perform as much of the
computation as possible in an offline setting. However, this
may make it difficult to add new users to the system on
a real-time basis, which is a basic necessity of most online
systems. Furthermore, the storage requirements for the pre-
computed data could be high.

On the other hand, a model-based algorithm such as one
based on Bayesian networks [2] or singular value decompo-
sition (SVD) [24] computes a model of the preference data
and uses it to produce recommendations. Often, the model-
building process is time-consuming and is only done peri-
odically. The models are compact and can generate recom-
mendations very quickly. The disadvantage to model-based
algorithms is that adding new users, items, or preferences
can be tantamount to recomputing the entire model.

ClustKnn, our proposed approach is a hybrid of the
model and memory based approaches and has the advan-
tages from both types. One of our primary goals is to
maintain simplicity and intuitiveness throughout the ap-
proach. We believe this is important in a recommender
algorithm because the ability to succintly explain to users
how recommendations are made is a major factor in pro-
viding a good user experience [28]. We achieve this by uti-
lizing a straightforward partitional clustering algorithm [12]
for modeling users. To generate recommendations from the
learned model, we use a nearest-neighbor algorithm simi-

lar to the one described in [19]. However, since the data is
greatly compressed after the model is built, recommenda-
tions can be computed quickly, which solves the scalability
challenge discussed previously.

One interesting property of ClustKnn is its tunable na-
ture. We show later in the paper that a tunable parameter,
the number of clusters k in the model, can be adjusted to
trade off accuracy for time and space requirements. This
makes ClustKnn adaptable to systems of different sizes
and allows it to be useful throughout the life of a system as
it grows.

We now provide the details of the algorithm. First we give
an outline, and following that we provide explanations of the
key points. The algorithm has two phases: model building
(offline) and generation of predictions or recommendations
(online).

Model Building

• Select the number of user-clusters k, considering the
effect on the recommendation accuracy and resource
requirements.

• Perform Bisecting k-means clustering on the user-
preference data.

• Build the model with k surrogate users, directly de-
rived from the k centroids: {c1, c2, . . . , ck}, where each
ci is a vector of size m, the number of items. That is,
ci = (R̃ci,a1 , R̃ci,a2 , . . . , R̃ci,am), where R̃ci,aj is the
element in the centroid vector ci corresponding to the
item aj . Further, since R̃ci,aj is essentially an average
value, it is 0 if nobody in the i-th cluster has rated aj .

Prediction Generation
In order to compute the rating prediction R̂ut,at for the tar-
get (user, item) pair (ut, at), the following steps are taken.

• Compute similarity of the target user with each of the
surrogate model users who have rated at using the
Pearson correlation coefficient:

wut,ci =

P
a∈I(Rut,a −Rut)(R̃ci,a −Rci)qP

a∈I(Rut,a −Rut)
2

P
a∈I(R̃ci,a −Rci)

2

where I is the set of items rated by both the target
user and i-th surrogate user.

• Find up to l surrogate users most similar to the target
user.

• Compute prediction using the adjusted weighted aver-
age:

R̂ut,at = Rut +

Pl
i=1(R̃ci,at −Rci)wut,ciPl

i=1 wut,ci

Note that any partitional clustering [12] technique can
used for model-building in ClustKnn. We selected the Bi-
secting k-means algorithm, which we describe below.

Bisecting k-means is an extension to and an improved
version of the basic k-means algorithm [12]. The algorithm
starts by considering all data points (rating-profiles of all
users, in our case) as a single cluster. Then it repeats the
following steps (k − 1) times to produce k clusters.

Memory-based
CF

Model-based
CF

SVD,
pLSA

User-based KNN

Personality Diagnosis,
ClustKNN

Item-based KNN

Figure 1: The space encompassed by the CF algo-
rithms we studied.

1. Pick the largest cluster to split.

2. Apply the basic k-means (2-means, to be exact) clus-
tering to produce 2 sub-clusters.

3. Repeat step 2 for j times and take the best split, one
way of determining which is looking for the best intra-
cluster similarity.

At this stage, it is straightforward to derive the time-
complexity of ClustKnn. Note that the time complexity of
CF algorithms can be divided into two parts: one for the of-
fline model-building, and the other for the online generation
of recommendations.

The time-complexity of the basic k-means is reported to
be O(n) in [12]; however, this is assuming the cost of com-
puting the similarity or distance between the data points and
centroids as a constant. However, in ClustKnn, this cost
is O(m), so the k-means time-complexity becomes O(mn).
Therefore, the complexity of the Bisecting k-means be-
comes O((k − 1)jmn) ' O(mn), which is the offline com-
plexity of ClustKnn.

During the online stage, O(k) similarity weight calcula-
tions are needed for the target user, each of which takes
O(m) time; therefore, online time-complexity is O(km) '
O(m).

In their work on document clustering [27], Steinbach et
al. empirically showed that Bisecting k-means performed
the best on a set of text datasets. Furthermore, the authors
noted a nice property of Bisecting k-means—the produced
clusters tended to be of relatively uniform size. Whereas, in
regular k-means, the cluster sizes may vary significantly,
producing poorer quality clusters.

4. OTHER CF ALGORITHMS CONSIDERED
In order to investigate how ClustKnn compares with

other CF algorithms, we selected several algorithms shown
in figure 1. Our criteria for picking the algorithms include
a) how frequently the algorithms are cited in the literature,
and b) whether the algorithms span the classification space
introduced by Breese et al [2]. In the following, we provide
a brief overview of each of the selected algorithms.

Table 1: Comparison of time-complexities of the se-
lected CF algorithms.

CF algorithm Offline Online
pLSA O(mn) O(m)
SVD O(n2m + m2n) O(m)
Personality Diagnosis - O(mn)
ClustKnn O(mn) O(m)
User-based KNN - O(mn)
Item-based KNN - O(mn)

pLSA
Probabilistic Latent Semantic Analysis (pLSA) for collab-
orative filtering is an elegant generative model proposed
by Hofmann et al [11]. pLSA is a three-way aspect model
adapted from their earlier contribution of two-way aspect
models applied to text analysis [10].

Figure 2: 3-
way aspect
model.

At the heart of the pLSA approach is
the notion of the latent class variable
Z. The number of states of Z is an in-
put to the model, and each state z can
be interpreted as a different user-type.
Each user belongs to these user-types
with a unique probability distribution
P (z|u). Recall that this type of proba-
bilistic assignment of entities to groups
is similar in principle to the so-called
soft-clustering approach.

Hofmann models the probability den-
sity function p(r|a, z) with a Gaussian mixture model and
develops an Expectation Maximization (EM) method to
learn mixture coefficients P (z|u) and p(r|a, z). Note that,
due to Gaussian modeling, estimating p(r|a, z) becomes es-
timating p(r; µa,z, σa,z).

In the end, the learned model includes P (z|u)s for each
user and for each state of Z, and values of µ and σ for each
item and each state of Z.

Prediction for the target (user, item) pair is simply the
weighted average of the means of at for each state z. That
is,

R̂ut,at =
X

z

P (z|ut)µat,z (1)

Note that the model size grows linearly with the num-
ber of users; in fact, it is O(m + n) ' O(n), if n � m.
Furthermore, since P (z|u)’s are precomputed in the model,
recommending to the new users pose a challenge. Hofmann
proposes to perform a limited EM iteration in this situation.

SVD
Singular Value Decomposition (SVD) is a matrix factoriza-
tion technique that can produce three matrices given the
rating matrix A: SV D(A) = U × S × V T . Details of SVD
can be found in [6]; however, suffice it to say that the ma-
trices U , S, and V can be reduced to construct a rank-k
matrix, X = Uk×Sk×V T

k that is the closest approximation
to the original matrix.

SVD requires a complete matrix to operate; however, a
typical CF rating matrix is very sparse (see table 2). To
circumvent this limitation of the CF datasets, [24] proposed
using average values in the empty cells of the rating matrix.
An alternate method proposed by Srebro et al. [26] finds a
model that maximizes the log-likelihood of the actual ratings

by an EM procedure. The EM procedure is rather simple
and is stated below:

E-step: Missing entries of A are replaced with the values
of current X. This creates an expected complete matrix A′.

M-step: Perform SV D(A′). This creates un updated X.
This EM process is guaranteed to converge. Upon con-

vergence, the final X represents a linear model of the rating
data, and the missing entries of the original A are filled with
predicted values.

Personality Diagnosis
Personality Diagnosis [18] is a probabilistic CF algorithm
that lies in between model-based and memory-based approaches.
In this CF algorithm, each user is assumed to have a person-
ality type that captures their true, internal preferences for
items. However, the true personality type is unobservable,
since users rate items by adding a Gaussian noise to their
true preferences on the items.

The probability that the target user ut’s rating on an item
at is x, given ut and ui’s personality types are same, is
defined by equation 2.

P (Rut,at = x|typeut = typeui) = e−(x−Rui,at)2/2σ2
(2)

The authors derive the probability that two users’ person-
alities are of the same type as follows.

P (typeut = typeui |Rut) =

1/n
Y
a∈I

P (Rut,a = xa|typeut = typeui) (3)

where Rut is the set of ratings reported by the target user.
Finally, the prediction on the target item at for ut is com-

puted as

R̂ut,at = argmax
x

P (Rut,at = x|Rut) (4)

= argmax
x

X
i

P (Rut,at = x|typeut = typeui)

.P (typeut = typeui |Rut) (5)

User-based KNN
This algorithm belongs to the memory-based class of CF al-
gorithms. Predictions under this algorithm are computed as
a two step process. First, the similarities between the target
user and all other users who have rated the target item are
computed — most commonly using the Pearson correlation
coefficient [8, 19]. That is,

wuiut =

P
a∈I(Rui,a −Rui)(Rut,a −Rut)qP

a∈I(Rui,a −Rui)
2

P
a∈I(Rut,a −Rut)

2

(6)

where I is the set of items rated by both of the users.
Then the prediction for the target item at is computed

using at most k closest users found from step one, and by
applying a weighted average of deviations from the selected
users’ means:

R̂ut,at = Rut +

Pk
i=1(Rui,at −Rui)wui,utPk

i=1 wui,ut

(7)

Note that we follow a number of improvements suggested
in [8], including dividing similarities by a constant if the two
users have not co-rated enough items.

Item-based KNN
This algorithm is also an instance of a memory-based ap-
proach. Predictions are computed by first computing item-
item similarities. [22] proposed adjusted cosine measure for
estimating the similarity between two items a, and b:

wa,b =

P
ui∈U (Rui,a −Rui)(Rui,b −Rui)qP

ui∈U (Rui,a −Rui)
2

P
ui∈U (Rui,b −Rui)

2
(8)

Where, U denotes the set of users who have rated both a
and b.

Once the item-item similarities are computed, the rating
space of the target user ut is examined to find all the rated
items similar to the target item at. Then equation 9 is
used to perform the weighted average that generates the
prediction. Typically, a threshold of k similar items are
used rather than all.

R̂ut,at =

P
all similar items,d(wat,d ∗Rut,d)P

all similar items,d(|wat,d|)
(9)

Comparison of time-complexity
Table 1 shows the time complexities of all the CF algorithms
we address in this paper including ClustKnn. Further-
more, we have collected the complexity-values directly from
the respective papers where they were introduced, without
formally deriving them here. We, however, translate the
values into the notations we follow in this paper. For an ex-
ample, Hofmann [11] shows that the offline time complexity
of pLSA is O(kN), where k is the number of states of Z and
N is the total number of ratings in the system. Since in the
worst case, N = nm, we use the offline complexity to be
O(mn).

From the table, it is clear that ClustKnn is one of the
cheapest CF algorithms presented, considering both the of-
fline and online time complexities. Further, although the
time complexities of pLSA and ClustKnn are identical,
ClustKnn is much simpler and operates on an intuitive
basis.

5. EMPIRICAL ANALYSIS

5.1 Datasets
We derived our datasets from MovieLens, a research rec-

ommender site maintained by the GroupLens project4. Al-
though the registered users of MovieLens can perform activi-
ties like adding tags, adding and editing movie-information,
engaging in forum discussions, and so forth, the main ac-
tivity taking place is rating movies so that they can re-
ceive personalized movie recommendations. As of this writ-
ing, MovieLens has more than 105,000 registered members,
about 9,000 movies, and more than 13 million ratings.

We use two datasets in this paper. The first dataset is
publicly available. The second dataset has been created by
taking the latest 3 million ratings and the corresponding

4http://www.cs.umn.edu/Research/GroupLens/

Table 2: Properties of the datasets
Property Ml1m MlCurrent
Number of users 6,040 21,526
Number of movies 3,706 8,848
Number of ratings 10,00,209 29,33,690
Minimum |ui|, ∀i 20 15
Average rating 3.58 3.43
Sparsity 95.5% 98.5%

Rating distribution

Rating Distribution

1 million dataset

Boundary Count Centers
1 622795 5.01% 0.5
2 1164207 9.36% 1.5
3 3507395 28.19% 2.5
4 4518944 36.32% 3.5
5 2628642 21.13% 4.5

ML_Current (3 million)

Boundary Count Centers
1 135018 4.60% 0.5
2 255992 8.73% 1.5
3 703108 23.97% 2.5
4 1233257 42.04% 3.5
5 606315 20.67% 4.5

5%
9%

21%

36%

28%

 1 2 3 4 5

5%
9%

21%

42%

24%

 1 2 3 4 5

Rating Distribution

1 million dataset

Boundary Count Centers
1 622795 5.01% 0.5
2 1164207 9.36% 1.5
3 3507395 28.19% 2.5
4 4518944 36.32% 3.5
5 2628642 21.13% 4.5

ML_Current (3 million)

Boundary Count Centers
1 135018 4.60% 0.5
2 255992 8.73% 1.5
3 703108 23.97% 2.5
4 1233257 42.04% 3.5
5 606315 20.67% 4.5

5%
9%

21%

36%

28%

 1 2 3 4 5

5%
9%

21%

42%

24%

 1 2 3 4 5

users and movies. We denote the former dataset as Ml1m
and the latter as MlCurrent throughout the paper. Table
2 summarizes the number of users, number of movies, num-
ber of ratings, minimum number of ratings of each user,
sparsity, and rating distribution of each dataset. Sparsity of
a dataset is defined as the percent of empty cells (that is,
no rating) in the user ×movie matrix.

One key difference between the two datasets is in the rat-
ing scale. In Ml1m, the rating scale is 1 star to 5 stars,
with an increment of 1 star; however, for the last couple of
years MovieLens has enabled half-star ratings. As a result,
in MlCurrent, the rating scale is 0.5 star to 5.0 stars, in
0.5 star increments.

Furthermore, note from the average ratings and the rat-
ing distributions that, the distributions are skewed toward
higher rating values. This is perhaps a common phenomenon
since people typically consume products they think they
might like. Therefore, their reports on products (movies, in
this context) are mostly on what they enjoyed. Another rea-
son for positive skewness might be the user interface itself—
if the products presented to the users are ordered by the
likelihood that the users would like them, they may only
focus on these products when submitting ratings.

5.2 Evaluation Metrics
In this section we briefly review the metrics we use to eval-

uate the quality of recommendations produced by the CF
algorithms. The first two to follow are to evaluate rating-
predictions, and the last category is to evaluate top-N rec-
ommendations.

NMAE
Mean Absolute Error (MAE) is the most commonly applied
evaluation metric for CF rating predictions. MAE is sim-
ply the average of the absolute deviation of the computed
predictions from the corresponding actual ratings. Formally,

MAE =
1

N

NX
j=1

|Ruj − R̂uj | (10)

where N represents the total number of predictions com-
puted for all users.

According to this metric, a better CF algorithm has a
lower MAE.

Other similar metrics such as Mean Squared Error (MSE)
or Root Mean Squared Error (RMSE) are sometimes used
for CF evaluation as well. Here, we only report MAE, as

0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

0.465

0.47

20 30 40 50 60 70 80 10
0

12
0

14
0

20
0

50
0

#of clusters in the model

N
M

A
E

ClustKNN
User-based KNN

(a)

6

6.2

6.4

6.6

6.8

7

20 30 40 50 60 70 80 10
0

12
0

14
0

20
0

50
0

#of clusters in the model

Ex
pe

ct
ed

 U
ti

lit
y

ClustKNN
User-based KNN

(b)

0.36

0.365

0.37

0.375

0.38

0.385

0.39

20 30 40 50 60 70 80 10
0

12
0

14
0

20
0

50
0

#of clusters in the model

N
M

A
E

ClustKNN
User-based KNN

(c)

7

7.2

7.4

7.6

7.8

8

8.2

8.4

20 30 40 50 60 70 80 10
0

12
0

14
0

20
0

50
0

#of clusters in the model

Ex
pe

ct
ed

 U
ti

lit
y ClustKNN

User-based KNN

(d)

Figure 3: Prediction performance of ClustKnn: (a)-(b) on Ml1m, and (c)-(d) on MlCurrent dataset. Results
of user-based KNN are shown for comparison.

one general result from past work is that most evaluation
metrics correlate well [24, 9].

In [7], the authors wondered about how good the CF al-
gorithm MAEs are over purely random guessing. They pro-
posed using the Normalized Mean Absolute Error (NMAE)
that is computed by dividing the MAE of a CF algorithm
with the expected MAE from random guessing. In this pa-
per, we use the version of NMAE proposed in [15]. Formally,

NMAE = MAE/E[MAE] (11)

Since the Ml1m dataset has a rating scale of 1-5, E[MAE]
= 1

25

P5
i=1

P5
j=1 |i − j| = 1.6, assuming both ratings and

predictions are generated by a uniform distribution. Simi-
larly, for the MlCurrent dataset, E[MAE] = 1.65.

Note that an NMAE value less than 1.0 means the ap-
proach is working better than random. An added benefit of
using NMAE is that evaluation of CF datasets of different
rating scales become comparable.

Expected Utility (EU)
A limitation of MAE is that it treats the same values of error
equally across the space of the rating scale. For example,
MAE would find no difference between the two (R̂, R) pairs
(5.0, 2.0) and (2.0, 5.0). However, depending on the underly-
ing product-domain, the users may be unhappy more about
the former pair than the latter.

In order to overcome this limitation, we propose the Ex-
pected Utility (EU) metric, a variant of which can be com-
monly found in Decision Theory.

For this accuracy metric, we arrange a 10× 10 matrix for
a CF algorithm, where rows represent predictions, and the
columns represent actual ratings. The (i, j)-th cell of this

matrix gives the count of occurrence of the pair (R̂i, Rj). We
also construct a static 10×10 utility table where each entry
corresponding to (R̂i, Rj) is computed using the following

utility formula: U(R̂i, Rj) = Rj − 2|R̂i − Rj |. Notice that
the utility equation tries to penalize false positives more than
false negatives. For example, U(R̂i = 5, Rj = 2) = −4,

U(R̂i = 2, Rj = 5) = −1, U(R̂i = 5, Rj = 5) = 5, and

U(R̂i = 1, Rj = 1) = 1. The interpretation is that not
seeing a movie you would not like is no cost or value, not
seeing a movie you would have liked is low cost (because
there are many other good movies to see), seeing a movie
you did not like is expensive and a waste of time, and seeing
a movie you like is a good experience.

Based on these two matrices, the expected utility is com-
puted as follows:

EU =
X

1≤i≤10
1≤j≤10

U(R̂i, Rj)P (R̂i|Rj) (12)

Note that many cells of the 10 × 10 matrix are zeros or

contain very small values; therefore, we estimate probabili-
ties using an an m-estimate [3] smoothing. The m-estimate
can be expressed as the following:

p =
r + m ∗ P

n + m
(13)

where n is the total number of examples, r is the num-
ber of times the event we are estimating the probability for
occurs, m is a constant, and P is the prior probability. We
have used m = 2 for our calculations.

Note that according to EU, the higher the EU of a CF
algorithm, the better the performance is.

Precision-Recall-F1
Precision and recall [5] have been in use to evaluate infor-
mation retrieval systems for many years. Mapping into rec-
ommender system parlance, precision and recall have the
following definitions regarding the evaluation of top-N rec-
ommendations. Precision is the fraction of the top-N recom-
mended items that are relevant. Recall is the fraction of the
relevant items that are recommended. A third metric, F1,
is the harmonic mean of precision and recall, and combines
precision and recall into a single metric. Formally,

F1 =
2 ∗ precision ∗ recall

(precision + recall)
(14)

Since the metrics involve the notion of relevancy, it is
important to define what the relevant items are to a user.
Furthermore, it is safe to say that users almost never enter
preference information into the system on all the relevant
items they have ever consumed—making the recall measure
questionable in the CF domain. A good source of discussion
on these and other CF evaluation metrics can be found in
[9].

Researchers have tried a variety of ways to incorporate
precision and recall into CF evaluation [1, 23]. In this paper,
we follow an approach similar to Basu et al [1]. In particular,
for our datasets, we consider the target user’s relevant items
known to us as the ones she rated 4.0 or above. Furthermore,
since our experiment protocol involves dividing the data into
training and test sets, we focus on the test set to find the
actual relevant items of the target user and to compute the
top-N list for her. Specifically, the top-N list only contains
items that are in the target user’s test set. Similarly, a list of
relevant items are also constructed for the target user from
her test set items. Based on the relevant list of and the
top-N list for the target user, the usual precision-recall-F1
computation ensues.

5.3 Results
Most of our empirical investigation involves taking a five-

fold cross-validation approach over each dataset. In other
words, we randomly partition our data into five disjoint folds
and apply four folds together to train a CF algorithm, and
use the remaining fold as a test set to evaluate the perfor-
mance. We repeat this process five times for each dataset
so that each fold is used as a test set once. The results we
present are averages over five folds.

First we demonstrate the rating-prediction performance
of ClustKnn. Figure 3 plots the predictive performance
of ClustKnn both for the metrics NMAE and EU, and
for both of the datasets. Since ClustKnn can be regarded
as approximating user-based KNN with the two becoming

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 10 20 40

top N movies

Precision

Recall

F1

Figure 4: ClustKnn (k = 200) top-N recommenda-
tion performance on Ml1m dataset with varying val-
ues of N .

equivalent when k equals the number of users in the sys-
tem (assuming non-empty clusters), we have also included
the predictive performance of user-based KNN in the plots
— to consider it as an upper bound for ClustKnn. As
depicted in figure 3, the performance of ClustKnn with
a moderate value of k, both by MAE and EU, is nearly
as good as the user-based KNN. For example, on the Ml-
Current dataset, which has more than 21,500 users, a
ClustKnn model with 200 clusters gives an NMAE of 0.37
and EU=7.82 — very close to the corresponding user-based
KNN results: NMAE=0.36 and EU=8.44. Furthermore, a
trend evident from the graph is that as k gets higher, accu-
racy keeps improving.

Table 3 compares prediction qualities of the ratings pro-
duced by the selected CF algorithms. Note that each al-
gorithm requires a few parameters to be set which can be
crucial for its better performance. For example, number of
z in pLSA, σ in personality diagnosis, and so forth. We
followed the suggestions and specifications found in the re-
spective papers to tune the algorithms so that they perform
their best.

We see from table 3 that SVD produced the best qual-
ity rating-predictions according to both NMAE and EU on
the Ml1m dataset. We did not have enough computational
resources available to run our particular Matlab imple-
mentation of SVD on the MlCurrent dataset. User and
item-based KNN produce the next best quality predictions.
ClustKnn with k=200 performs very well, and it is at least
as accurate as pLSA and much better than the other hybrid
model- and memory-based CF algorithm, personality diag-
nosis. Interestingly, paying a close attention to the NMAE
and EU columns, the finding of [24, 9] that CF evaluation
metrics correlate, becomes evident. Indeed, the correlation
coefficient between MAE and EU on Ml1m dataset is -0.94,
and on MlCurrent dataset it is -0.97. Note that negative
correlations are due to the fact that the directions of MAE
and EU are opposite, i.e., MAE is an error metric and EU
is a value metric. Next we turn into top-N recommendation
results.

Figure 4 shows the interplay between precision and re-
call, and the resulting F1 for ClustKnn as N varies. The
pattern present in the figure is consistent across each of the
CF algorithms we studied. Note that more than 50% of the
users have only 12 or fewer relevant items in the test sets

Table 3: Comparison of rating-prediction quality of the selected CF algorithms. (The best results in each
column and the results of ClustKnn are shown in bold face.)

CF algorithm MAE NMAE EU
Ml1m MlCurrent Ml1m MlCurrent Ml1m MlCurrent

SVD 0.69 - 0.43 - 6.81 -
User-based KNN 0.70 0.61 0.44 0.37 6.98 8.44
Item-based KNN 0.70 0.60 0.44 0.36 6.93 8.48
ClustKnn (k=200) 0.72 0.62 0.45 0.37 6.63 7.82
pLSA 0.72 0.61 0.45 0.37 6.57 7.95
Personality Diagnosis 0.77 0.66 0.48 0.40 5.00 3.19

of Ml1m, and 6 or fewer in the test sets of MlCurrent.
Therefore, recall values quickly ramp up and higher values
of N provide less valuable information if we want to compare
the algorithms.

Table 4 shows the comparative top-N recommendation re-
sults of the algorithms for N=3 and 10. The results closely
follow the results in the rating predictions. Further, ClustKnn
displays good top-N performance, as good as pLSA and
much better than personality diagnosis.

6. DISCUSSION
From the discussions thus far and from the results, we

have established that the ClustKnn algorithm is intuitive
and highly scalable. The learned model can be used to find
various customer segments and their general characteristics.
The accuracy of this hybrid memory and model-based algo-
rithm is very good—the best algorithm in our collection is
better by only a tiny percentage. The sensitivity of recom-
mender system users to changes in algorithm accuracy has
not been studied, but it is reasonably unlikely that users will
notice an MAE change of less than 1%.

The memory footprint of this algorithm is very small once
the model is learned. Memory requirement to generate rec-
ommendations for the target user is only O(km+m), where
m is the number of items in the system—O(km) for the
model and O(m) to store the target user’s profile. As a re-
sult, this algorithm is ideal for platforms with low storage
and processing capabilities.

One such platform is handheld computers—these devices
are far slower and can store much less data than their desk-
top counterparts. Furthermore, many devices in use today
are not continuously connected to networks. Deployment of
recommender systems on handheld devices is an active area
of research today [17], and ClustKnn provides one possible
way to implement a self-contained recommender system on
a handheld device. ClustKnn can also be useful in high-
usage systems where recommendation throughput is an im-
portant factor.

Finally, we conclude our discussion with an alternate ap-
proach we could have taken regarding clustering and collab-
orative filtering.

Focus on the best-matched cluster to find neighbors,
or scan all of the cluster-centers? ClustKnn computes
recommendations for the target user by seeking for the clos-
est neighbors from a set of cluster centers. However, another
possibility is to first find out the best-matched cluster for the
target user, and then explore for the best neighbors from
within the selected cluster. We now provide three reasons
to avoid this approach. First, this might hurt the coverage of
the recommender, i.e., the number of items the system can

0%

2%

4%

6%

8%

10%

12%

14%

16%

20 30 40 50 60 70 80 10
0

12
0

14
0

20
0

50
0

#of clusters in the model
%

of
 n

ei
gh

bo
rs

 in
 s

am
e

cl
u

st
er

ML1M
MLCurrent

Figure 5: Percent of top 20 neighbors that can be
found in the same cluster.

generate personalized recommendations for might get lower.
The reason is that the users in the picked cluster may not
have rated a large fraction of the items that people in other
clusters rated. Second, this approach might incur high com-
putational cost similar to the regular user-based KNN, since
the selected cluster can be a very large one. Third, as figure
5 shows, a large fraction of the closest neighbors may reside
in other clusters than the one the target user belongs to.
As a result, using a single cluster can easily lead to using
less similar neighbors and thereby incurring accuracy loss.
Note also from the figure that this problem gets worse as
the number of clusters grows.

7. CONCLUSION
We have presented a hybrid memory- and model-based col-

laborative filtering algorithm that is simple, intuitive, and
highly scalable. The method achieves recommendation qual-
ity comparable to that of several other well-known CF algo-
rithms. Further, the operator of the recommender system
can tune a parameter in the model to trade off speed and
scale.

In the future, we plan to extend this approach to miti-
gate the so called cold-start problem [25] in CF. That is, a
CF recommender cannot produce personalized recommen-
dations on newly introduced items lacking any or sufficient
user-opinions on those items. By clustering on the space
of item feature information, we hope to investigate the im-
plications of building a hybrid recommender that works as a
CF-based recommender on items with enough preference in-
formation, and as a content-based recommender otherwise.

Table 4: Comparison of top-N recommendation quality of the selected CF algorithms.
CF algorithm top-3 top-10

Precision F1 Precision F1
Ml1m MlCurrent Ml1m MlCurrent Ml1m MlCurrent Ml1m MlCurrent

SVD 0.8399 - 0.379 - 0.7564 - 0.6131 -
User-based KNN 0.833 0.6693 0.379 0.4086 0.750 0.5953 0.610 0.556
Item-based KNN 0.819 0.657 0.374 0.407 0.749 0.592 0.610 0.556
ClustKnn (k=200) 0.825 0.659 0.377 0.407 0.743 0.589 0.606 0.553
pLSA 0.817 0.656 0.375 0.406 0.739 0.587 0.604 0.552
Personality Diagnosis 0.789 0.622 0.366 0.391 0.723 0.565 0.595 0.537

8. ACKNOWLEDGMENTS
We appreciate many helpful comments provided by Sheng

Zhang of Dartmouth College in properly implementing SVD-
based CF. Dan Cosley of GroupLens research was very help-
ful in giving feedback on early drafts of this paper. Shilad
Sen’s pLSA code was of great help. This work was supported
by grants from the NSF(IIS 03-24851 and IIS 96-13960).

9. REFERENCES
[1] C. Basu, H. Hirsh, and W. Cohen. Recommendation

as classification: using social and content-based
information in recommendation. In Proceedings of the
1998 National Conference on Artificial Intelligence
(AAAI-98), pages 714–720, 1998.

[2] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence (UAI-98), pages
43–52, July 1998.

[3] B. Cestnik. Estimating probabilities: A crucial task in
machine learning. In Proc. Ninth European Conference
on Artificial Intelligence, pages 147–149, 1990.

[4] S. H. S. Chee, J. Han, and K. Wang. RecTree: An
efficient collaborative filtering method. Lecture Notes
in Computer Science, 2114, 2001.

[5] C. Cleverdon, J. Mills, and M. Keen. Factors
Determining the Performance of Indexing Systems:
ASLIB Cranfield Research Project. Volume 1: Design.
ASLIB Cranfield Research Project, Cranfield, 1966.

[6] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407, 1990.

[7] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Inf.Retr., 4(2):133–151, 2001. ID: 187.

[8] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl.
An algorithmic framework for performing
collaborative filtering. In Proceedings of the 1999
Conference on Research and Development in
Information Retrieval (SIGIR-99), Aug. 1999.

[9] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.
Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems,
22(1):5–53, Jan. 2004.

[10] T. Hofmann. Probabilistic latent semantic analysis. In
Proc. of Uncertainty in Artificial Intelligence, UAI’99,
Stockholm, 1999.

[11] T. Hofmann. Latent semantic models for collaborative

filtering. ACM Trans. Inf. Syst., 22(1):89–115, 2004.

[12] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM Comput. Surv.,
31(3):264–323, 1999.

[13] J. Kelleher and D. Bridge. Rectree centroid: An
accurate, scalable collaborative recommender. In
P. Cunningham, T. Fernando, and C. Vogel, editors,
Procs. of the Fourteenth Irish Conference on Artificial
Intelligence and Cognitive Science, pages 89–94, 2003.

[14] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[15] B. Marlin. Modeling user rating profiles for
collaborative filtering. In NIPS, 2003. crossref:
DBLP:conf/nips/2003.

[16] P. Melville, R. J. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved
recommendations. In Eighteenth national conference
on Artificial intelligence, pages 187–192. American
Association for Artificial Intelligence, 2002. ID: 179.

[17] B. Miller, I. Albert, S. K. Lam, J. A. Konstan, and
J. Riedl. Movielens unplugged: Experiences with a
recommender system on four mobile devices. In
Proceedings of the 17th Annual Human-Computer
Interaction Conference (HCI 2003), British HCI
Group, Miami, FL, Sept. 2003.

[18] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L.
Giles. Collaborative filtering by personality diagnosis:
A hybrid memory and model-based approach. In UAI
’00: Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, pages 473–480,
Stanford, CA, 2000. Morgan Kaufmann Publishers
Inc.

[19] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An open architecture for
collaborative filtering of netnews. In CSCW ’94:
Proceedings of the 1994 ACM Conference on Computer
Supported Cooperative Work, pages 175–186, Chapel
Hill, North Carolina, United States, 1994. ACM Press.

[20] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc, 1986.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Recommender systems for large-scale e-commerce:
Scalable neighborhood formation using clustering. In
Fifth International Conference on Computer and
Information Technology (ICCIT 2002).

[22] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW ’01: Proceedings of the 10th

International Conference on World Wide Web, pages
285–295, Hong Kong, 2001. ACM Press.

[23] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Analysis of recommender algorithms for
e-commerce. In ACM E-Commerce 2000, pages 158 –
167, 2000.

[24] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Application of dimensionality reduction in
recommender system – a case study. In ACM
WebKDD 2000 Web Mining for E-Commerce
Workshop, Boston, MA, USA, 2000.

[25] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. In SIGIR ’02: Proceedings of the
25th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 253–260, New York, NY, USA, 2002. ACM
Press.

[26] N. Srebro and T. Jaakkola. Weighted low rank
approximation, 2003.

[27] M. Steinbach, G. Karypis, and V. Kumar. A
comparison of document clustering techniques, 2000.

[28] K. Swearingen and S. Rashmi. Interaction design for
recommender systems. In Designing Interactive
Systems 2002. ACM, 2002.

[29] L. Ungar and D. Foster. Clustering methods for
collaborative filtering. In Proceedings of the Workshop
on Recommendation Systems. AAAI Press, Menlo
Park California., 1998.

[30] K. Yu, X. Xu, J. Tao, M. Ester, and H.-P. Kriegel.
Instance selection techniques for memory-based
collaborative filtering. In SDM, 2002.

