
A Case Study of Distributed, Asynchronous Software
Inspection

Michael Stein, John Riedl
Dept. of Computer Science

University of Minnesota
200 Union St. S.E.

Minneapolis, MN, USA 55455
+1 612 624 (8372, 7372)

{mstein, riedl}@cs.umn.edu

S&en J. Harner
ICEM Systems, GmbH.

n T<uesterstraOe 8
nnl-. r\
JUDLY Hanover, Germany

+49 511 9848 713
sjh@icem.de

Vahid Mashayekhi *
DELL Computer Corporation

2214 W. Braker Lane
Suite D

Austin, TX, USA 78758
+l 512 728 3653

victormashayekhi@us.dell.com

ABSTRACT
Traditional software inspection requires participants to
meet together at the same time in the same place. Dis-
tributed, asynchronous inspection allows participants
to conduct meetings independently of time and space,
making inspection more convenient. We report on an
industrial study that we have performed using a tool
designed for distributed, asynchronous software inspec-
tion. Our experience suggests that distributed, asyn-
chronous software inspection is feasible, and is a cost-
effective means of collaboration for geographically dis-
tributed work groups.

Keywords
Concurrent Software Engineering, Software Inspection,
CSCW, Collaboration, Groupware, World Wide Web.

INTRODUCTION
Software inspection is a widely practiced, highly struc-
tured, collaborative software engineering activity. The
traditional model of inspection is centered around a cen-
tralized, synchronous inspection meeting. This places
bobh space and time constraints on the inspection.

Participants are constrained in space to be at the site
of the inspection meeting. Travel to the meeting site
can be costly in terms of both time and money for dis-
tributed workgroups. One alternative is to hold an in-
spection meeting by audio or video conference, with the
addition of a shared text space on which everyone can
simultaneously view inspection artifacts[l4]. However,
this alternative does not solve the time constraint de-
scribed next.

Participants are constrained in time by the need to at-
tend the inspection meeting. Even for co-located work-
groups, it may be days between the time the inspection

*This research was conducted while Dr. Mashayekhi was at
the University of Minnesota.

Prrmission to make digit&bard copies of all or port of this material for
personal or classroom use is gamed without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, end notice is
given that copyri’ght is by permission ofthe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee
ICSE 97 Boston MA IJSA
Copyright 1997 ACM O-89791-914-9/97/05 ..$3.50

105

material is ready and the time all inspectors are free
to attend a meeting[l]. Additionally, for intercontinen-
tally distributed workgroups, in may even be impossible
to schedule an audio or video conference during working
hours for all participants.

Advances in distributed systems, networks, and user
interface technology have enabled distributed, asyn-
chronous meetings to become a viable alternative to
face-to-face (FtF) meetings[2]. Building on these ad-
vances, we built and experimented with various proto-
type tools for collaborative review. The Collaborative
Software Inspector (CSI)[14] provided computer sup-
port for synchronous inspection using the Suite[4] in-
frastructure. The Collaborative Asynchronous Inspec-
tor of Software (CAIS)[15] extended CSI to support dis-
tributed, asynchronous inspections of text, and was im-
plemented on Lotus Notes[20] as well as Suite.

We have extended these previous prototype tools to pro-
vide a World-Wide-Web (“Web”) based tool for dis-
tributed, asynchronous software inspection of textual
and graphical artifacts, which we call the Asynchronous
Inspector of Software Artifacts (AISA)[16].

This paper reports our experiences with using AISA for
software inspections in a professional development or-
ganization split between Germany and two locations in
the USA, and for inspection of graphical artifacts.

Hypothesis
Our goal in building and using AISA has been to explore
the hypothesis:

Distributed, asynchronous software in-
spection can be a practical method for
software inspection of both graphical
and textual artifacts.

Model of Software Inspection
Software inspection is a detailed review of a small
amount of material by technically competent peers
with the goal of detecting faults [7]. We implement
Humphrey’s model [12], because it is highly structured
and provides intermediate results through individual

and correlated fault lists.

In Humphrey’s model, the inspection team is a group
of peers with the technical knowledge required for de-
tailed inspection. Participants have specific roles: re-
viewer, moderator, producer, and recorder. Each par-
ticipant except the producer prepares for the inspection
by looking over the material, creating a fault list, and
giving the list to the producer before the meeting. The
producer correlates the faults and prepares to address
the faults in the inspection meeting. All participants at-
tend the inspection meeting and discuss the faults. The
quantity of target material addressed in one inspection
is small because of the detailed level of review. The four
phases of software inspection are:

Initialization: The target material is identified and the
participants are chosen. The producer and mod-
erator may hold an optional introductory meeting.
The inspection meeting is scheduled, and criteria
for the inspection are chosen.

Preparation: The target material and inspection crite-
ria are distributed to the reviewers. The reviewers
examine the target material and create individual
fault lists, giving the lists to the producer when
their examinations are complete. Then the pro-
ducer merges the individual fault lists into a corre-
lated fault list.

Discussion: The producer and reviewers discuss the is-
sues on the correlated fault list, commonly in an
FtF meeting. When consensus on fault resolution
is reached, required actions are recorded on an ac-
tion item list. Finally, it is decided whether a re-
inspection is needed.

Post-Discussion: After the producer fixes the problems
by completing each action item, the moderator re-
evaluates the target material. If a re-inspection is
required, the inspection process begins again.

Thus the inspection process consists of two distinct
meeting modes: fault collection and discussion. Dur-
ing fault collection, individuals review the documents
independently and are not restricted by place and time.
In the discussion, all participants discuss the correlated
fault list generated by the producer. The discussion
is ‘traditionally a same-time, same-place meeting. We
explore the potential for replacing this meeting with a
distributed, asynchronous discussion. Effective conduct
of such a discussion would allow software inspection to
be done efficiently by widely distributed workgroups.

User-level Collaboration Requirements
We have identified the following user-level collaboration
requirements for FtF inspections that we wish to con-
serve in asynchronous inspection:

Threads of Discussion: Participants must be able to

conduct discussions on faults during the meeting,
In FtF meetings, discussions are pursued serially,
Similarly, within a discussion, all comments are
made serially, with participants taking turns to
voice their opinions.

Sharing of Information: Participants must be able to
share inspection information with one another,
This information consists of the target material,
correlated fault list, in-meeting inspection artifacts,
post-meeting summaries, and action items. In a
paper-based meeting, this is done by copying the
paper artifacts, or displaying them on a screen.

Z’kain of Thought: Participants must be able to main-
tain their train of thought during the meeting.
Train of thought is sustained in FtF inspection
meetings, since each meeting is held as a single ses-
sion from start to finish.

Visual Cues: Participants must be able to direct the at-
tention of other participants to areas of interest in
the information space. In FtF meetings, speakers
often achieve this goal by using pointers to provide
a common focus for the group and guide the par-
ticipants through the inspection material.

Reaching a Consensus: Participants must be able to ar-
rive at decisions that resolve differences. In FtF
meetings, once a discussion has matured, a poten-
tial resolution is identified and is placed before the
group as a proposal. The participants must decide
whether they collectively agree with a proposal ei-
ther formally (by voting) or informally.

Coordination: Participants must be able to communi-
cate with one another to coordinate their activities
and ensure that the group’s objectives are met, In
FtF meetings, participants use verbal communica-
tion for moving through the meeting agenda and
ensuring that project deadlines are satisfied,

Inspection Histoy: A record of the inspection must be
kept, identifying issues raised and their resolutions,
This record must be persistent, so that it can be
used throughout the development cycle for techni-
cal reference (e.g., a design history) and for process
improvement. In an FtF meeting, this record is
kept on paper, and possibly moved onto electronic
media after completion of the inspection.

Asynchronous Tool Design Elements
To meet the set of requirements above, we have lden-
tified three basic design elements for distributed, asyn-
chronous inspections:

Shared Information Space: The shared information
space plays a pivotal role in asynchronous inspec-
tion. It presents a causal and temporal ordering of
the inspection activities, organizes the target ma-

terial into a hierarchy of its logical parts, captures
and organizes the additions participants make to
the information space, groups interrelated faults as
a single composite fault, controls access to the in-
formation, and ensures that the inspection mate-
rial remains available after the conclusion of the
inspection. The shared information space satisfies
the ‘Sharing of Information”, “Visual Cues”, and
“Inspection History” requirements.

Group Decision Suppoti: Once a proposal is put forth
by an inspection participant, group members need
to decide its status. A tool for asynchronous inspec-
tion must support these activities. Group decision
support satisfies the “Reaching a Consensus” and
“Coordination” requirements.

Communications: In an asynchronous meeting, partici-
pants must be made aware of what others are doing,
or what they are expected to contribute toward task
completion. This awareness can help prevent du-
plication of efforts, coordinate the group activities,
and ensure project deadlines are met. For instance,
during the discussion phase of the inspection, par-
ticipants must be informed that the discussion has
begun for various correlated faults, they must be
able to view the ongoing discussions, and they must
be informed that an issue is resolved. Communica-
tions satisfies the “Thread of Discussion”, ‘Train
of Thought”, and “Coordination” requirements.

RELATED WORK
Research in the area of software inspection has resulted
in the introduction of computer-supported tools. Such
tools include ICICLE, CIA, CSRS, and Scrutiny, as well
as our tools CSI and CAIS (described above).

ICICLE [3] is a system intended to support the set of
tasks performed during code inspection. ICICLE assists
individual users in the comment-preparation phase of
code inspection. It provides a synchronous environment
in the inspection meeting phase, with computer support
providing a paperless meeting.

Collaborative Inspection Agent (CIA) is a document in-
spection tool [lo]. CIA supports synchronous inspection
of all work products at various stages of the life cycle. It
supports collaborative work by simultaneously display-
ing information on multiple users’ screens, and allowing
participants to play inspection roles.

Collaborative Software Review System (CSRS) [13]
aims to decrease the required human effort in reviews,
conduct inspections incrementally during the software
development, and provide on-line capabilities to col-
lect metrics on the inspection process and software arti-
facts. The system is implemented on top of EGRET, a
multi-user, distributed, hypertext environment for asyn-

Click on my object in the above imagemap to view/inspect that objert.

Help: F’coblem Description DataDicstionq

Guide toNotation Ins~&on Criteria

AISA help

If you ax completely donesubmittingfaulkfor all files,

dickon~.

Figure 1: Sample home page for graphical inspection.

chronous collaboration.

Scrutiny [9] is a collaborative inspection system that has
been successfully used for professional software develop-
ment. It supports reviewers in a synchronous meeting.
Lotus Notes could also be used to support software in-
spection of textual artifacts [ZO].

AISA goes beyond ICICLE, CIA, and CSI by support-
ing asynchronous, distributed inspections. AISA goes
beyond Scrutiny, CSRS, and CAIS by supporting in-
spection of graphical documents. AISA, alone among
the systems we have examined, is built upon the Web
infrastructure.

AISA INSPECTION SCENARIO
This section describes how an inspection would be con-

Click on any filename below to view,Gnspect that file.

ascreen.h ascreenxc

campositeh campositecc

aoint.h draw cc *

If you are completely done submitting faults for all files,

Figure 2: Sample home page for textual inspection.

109

-- ~---.__

i

Loan
I

--~-
-ton D-A

To add a fault. click on [Addj

Pcc.duarl De.pzn&ng on ycu inspection pdocol.
you mny not bo &lo to add faults.

Faults:

l.MikeSt&pxted cmTuaJul30 11:39:51 CST 1996v
2.AISATcst posted on’IL0 Jul30 13:40:24 CSl- 1996W

Figure 3: Graphical artifact to inspect.

ducted using the Web-based AISA tool. We describe
the use of the tool during the four phases of software
inspection described previously.

Initialization Phase
The moderator and producer decide what material is
to be inspected, and break large software artifacts into
multiple inspections if necessary. The artifacts may be
graphical or textual. .Then the moderator decides the
granularity of fault collection on the material: during
the fault collection phase, reviewers will attach faults
to particular inspection items, and the moderator must
set up the inspection as a set of items, to each of which
reviewers may attach faults.

Thus, for an inspection of C++ classes, the granularity
for fault collection might be a single class. For inspec-
tion of a graphical artifact, the granularity might be a
single graphical object, or a small set of such objects.

The moderator puts the material in a node that is
known to the web server, and creates a home page for
the inspection (Figures 1 and 2). Since there is no
scheduled FtF meeting the Moderator must also set the
schedule for completing fault collection, fault correla-
tion, and discussion.

Preparation Phase
The moderator announces the Uniform Resource Loca-

N Pile run.h
/I contains class conposite

#ifndef RUN H
8def ine P.UN:H

#include ‘conposite. h’

#endif RUN-S

// end of file run.h

To addafault, clickon

Producer! Depending onyourlnspectIonprotoco1,
youmaynotbeabletoaddfaults.

Faults:

1. Mike Stein posted on Tue Mar 12 13:02:04 CST 1996 D&&&h&&b
2. AISA Testpostedon TueMarl2 13:14:26 CST 1996 ~KkvlWVl~

Figure 4: Textual artifact to inspect.

tion (URL) of the inspection’s home page to the par-
ticipants. The reviewers examine the target material
on-line, or by printing paper copies (Figures 3 and 4).

When reviewers identify faults, they click on the “Add
Fault” button to go directly to the fault collection tom-
plate, onto which they add faults. (Figure 5).

There are two methods of identifying the reviewer who
added a fault. Automatic identification is provided us-
ing the “identd” daemon, but this doesn’t always work
when participants are behind proxy servers (as in our
industrial inspections). In this case, reviewers identify
themselves manually.

After completing inspection of the target material, the
reviewer presses the “Done” button on the home page,
and waits for the producer to correlate faults.

Once all reviewers have finished submitting faults, the
producer performs Fault Correlation. The producer ex-
amines each fault, and groups duplicated faults together
into a single “merged” fault (Figure 7). This is a two-
phase process. First, the producer looks at each artifact,
and groups all duplicated faults for that artifact (Fig-
ure 6). Then the producer looks at the concatenation
of these per-artifact correlated lists, and groups identi-
cal faults that were submitted to different artifacts; an
example of this would be when two reviewers assign an
interface fault to artifacts on either side of the interface,

Discussion Phase
A distributed, asynchronous meeting is carried out
through the discussion phase of the inspection. The

110

- _---

Subject:

Fault Classffiitfon: No Classification 0

Text Formatting: $ Havewab browser format text, 0 Use given taxt as-is

To submit the fault, press IAdd1 To dem this form. press 1-1

Press , Help on Severity/Classihcation for definitions of Fault Severities

and Classiiications.

Press

Figure 5: Reviewer’s fault collection template.

AISA tool recognizes that the producer has completed
fault correlation, and sends e-mail to all participants
indicating that the discussion has begun. When partic-
ipants next access the inspection’s home page, they are
led to a list of faults for discussion.

Participants can view a fault, comment on it, and sub-
mit a proposal for resolution of the fault. When a pro-
posal has been submitted, reviewers (but not the pro-
ducer) vote on it electronically. Voting can be set up
to require either unanimous agreement for approval, or
a majority vote. If a proposal is accepted, the discus-
sion for t,his item is closed, and the item is marked as
resolved. Ot,herwise, discussion continues.

All participants can view all comments made using the
discussion page for a given fault, which holds a threaded
list of discussion items. If the moderator decides that an
issue is unresolvable within the contest of the discussion,
the moderator may mark the fault as tabled for future
analysis, and disallow further discussion of this fault
within the con&es of the inspection (Figure 7).

Post-Discussion Phase
The Moderator closes the inspection after all issues are
resolved, or no further progress is being made. AISA
automatically sends the participants notification that
the inspection is closed. Then the Moderator works
with the Producer and appropriate reviewers to resolve

Single Document Correlation

Negate/Ramovefault list (eg.: 1,2-3,4,6):

1-p

Mergefaultlist (eg.: 1,3-4; 2,6 merges 1,3,4 into one and 2,6 into another):

e

To submitlists, click on m .
I--

To claarlists, clfckon~.

@Leturn to local correlationpage

---.- ----~

WARNING: If you view any of these error i&s,
use the&& key to return to this page,
NOT the Relzm to Fcrxft Lest button on the fault page.
--
1. Mike Stein posted on Tue Mar I.2 13:02:04 CST 1996 Definition Fault,
2. AISA TestpostedonTueMarl2 13:14:26 CST lY96DiicultvVietig

Figure 6: Producer’s fault correlation template

any issues that were left for later resolution.

Inspection artifacts are retained by AISA, so they can
be used for historical purposes and data analysis.

INSPECTION EXPERIENCE
We have done tsvo types of inspections with AISA. We
inspected C++ class definitions for an ICEM Systems
class library, to study distributed, asynchronous inspec-
tion in an industrial setting. The original industrial trial
consisted of two inspections. However, owing to the
positive esperiences ICEM had with these inspections,
they conducted the remaining inspections of the class
definitions with AISA. Our data cover five inspections
of artifacts involved in base functionality for commercial
products.

We also inspected graphical object diagrams at the Uni-
versity of Minnesota with graduate students to demon-
strate feasibility of graphical inspection.

Measurements Taken
AISA collects the following metrics from each inspection
phase: (1) Fault Collection: Number of faults recorded
by each participant; (2) Fault Correlation: Number of
duplicates removed and number of faults merged; (3)
Inspection Meeting: Number of comments per person
on each fault, number of proposals per person, num-
ber of votes per person, number of resolved faults, and
number of unresolved faults. AISA also maintains a vis-
itation schedule for each participant (i.e., AISA times-
tamps and records each access to a Web page).

111

Discussion List

Correlated Fault List

Moderator, to endtbemaetingckkon

Figure 7: Discussion screen

Additionally, we measured qualitative characteristics by
asking the subjects to complete questionnaires (on the
Web) after the inspection. We inquired about their de-
gree of satisfaction with the inspection experience, level
of agreement with the inspection structure, level of flex-
ibility provided in their participation schedule, useful-
ness of the notification messages, suitability of the de-
cision making methods, degree of participation in the
discussions, and meeting preferences. ’

Overview of Textual Inspection
The target material in the ICEM inspections was a set of
C++ class definitions for a corporate class library. The
goals of the inspections of textual artifacts at ICEM
Systems were: (1) to test the feasibility of AISA in an
industrial setting, and (2) to enable ICEM Systems to
inspect software artifacts with a distributed Workgroup
in a cost-effective manner.

Participants were distributed among 3 locations in Ger-
many, and two in the United States (in Minnesota and
Ohio). They used a variety of Web browsers (Mosaic
and Netscape graphical browsers, and the Lynx text-
only browser) to access the inspection material from
both their offices and homes. These inspections used
manual identification, because the German participants
accessed the material from behind proxy servers.

Textual Inspection Results

‘All measurements were used for study purposes only. Raw
results were not shared with management.

Table 1: Table of inspections at ICEM Systems.

Inspection 1 2 3 4 5 Mean SD
Nr.
Member 113 317 49 131 231 168 106
Functions

Fault 1.6 1.1 2.5 1.7 1.6 1.5 0,7
Duplication
Fault .12 .16 .31 .24 .17 .20 .07
Density
Discussion 1.8 0.4 2.1 1.4 1.5 1.5 0.9
Activity
Fault .43 .32 1.0 .50 .85 .62 .29
Resolution

Table 2: Results from ICEM Systems inspections

Table 1 summarizes the raw results for the inspections
of the C++ class definitions. These were inspections of
detailed design information, not of source code. In the
following tables and figures, we denote these as inspec-
tions 1 through 5.

Size measures available to us for the amount of mate-
rial reviewed were the number of classes, the number
of member functions, and the total documentation size
in bytes. The documentation size was unreliable be-
cause the size includes hyperlinks and other formatting
artifacts. The number of member functions reviewed is
more informative than the number of classes, since the
classes were of very different sizes. So the number of
member functions was our measure of inspection size,

An inspection is effective if participants find the faults
in the material being inspected, and are able to resolve
them to their mutual satisfaction. We have identified
the following ratios as measures of inspection effective-
ness. We report their values in Table 2, and we discuss
them below.

Fault DupZication: The ratio of Faults Collected to
Merged Faults gives the mean number of times the
same fault was reported by different people. Thus
a high ratio indicates that many of the faults were
discovered by more than one person. 2

Fault Density: The rate of Merged Faults per Member
Function indicates the fault density of the material.
A low Fault Density may signify either an excellent
design, or a cursory inspection of the material,

Discussion Activity: The number of Discussion Items
per Merged Fault measures the amount of activ-
ity that took place during the discussion phase. A
high value suggests an active discussion.

Fault Resolution: The percentage of Merged Faults re-
solved within the AISA asynchronous inspection is

2Reviewers could view each others’ faults as they worked, CO

some people may have discovered a fault, observed that othoro
had already entered it, and not entered a duplicate.

112

0 100 200 300
Member Functions

Figure 8: Fault Duplication Figure 9: Fault Density

the key measure of effectiveness. For asynchronous
inspection to be completely effective, all issues must
be resolvable without traditional meetings.

In analyzing these results, we were interested in trends
within the inspections studied. The raw values of these
metrics are of little use outside this context, because
they might be expected to differ for different organiza-
tions, different types of software products, and artifacts
at different phases of the development process.

Fault Duplication
There was wide variation in the average number of re-
viewers who identified the same fault, from 1.1 to 2.5
reviewers. Figure 8 shows a discernible trend toward
more people independently finding the same fault for
smaller inspection sizes.

Fault Density
The density of merged faults per member function was
relatively consistent throughout the five inspections,
with a mean of 0.20 faults/function and a standard de-
viation of 0.07 (Figure 9). There was no clear trend in
the fault density as a function of inspection size.

Discussion Activity
The number of discussion items per fault was very low
in inspection 2 (0.4), but had less variation among the
other inspections. Inspection 3 had the most discussion
activity (2.1 items/fault) (Figure 10). Discussion activ-
ity tended to drop off with increasing inspection size.

Fault Resobtion
Percentage of faults resolved in the meeting ranged from
32% (inspection 2) to 100% (inspection 3), with a wide

3

4

5 2

1

I I I I I 1
I

0 100 200 300
Member Functions

variation among inspections (Figure ll), but no defi-
nite trend toward greater fault resolution with smaller
inspection size.

However, even in the absence of trends for some of the
metrics we used, inspections 2 and 3 had the outlying
points for these metrics , and in opposite directions. We
discuss the meaning of this in Lessons Learned.

Overview of Graphical Inspection
At the University of Minnesota, we inspected a graph-
ical object diagram of the workings of an automatic
teller machine. The goals of this inspection were to test
the feasibility of AISA for inspecting graphical artifacts,
and to measure the efficacy of asynchronous inspection
in locating faults. As part of our test, we seeded the
artifacts with 10 faults. If the inspectors could not find
most of these faults, we felt the inspection could not
have been effective.

Participants were four graduate students in the Com-
puter Science department at the University of Min-
nesota, including two of the authors. All participants
had at least 1.5 years of industrial software develop-
ment experience. Participants were all located at the
university, and accessed the inspection material via a
local area network. They were identified automatically
by the “identd” daemon.

Graphical Inspection Results
The three reviewers recorded 28 total faults, with each
reviewer discovering either 9 or 10 faults. 7 of the 10
seeded faults were found. The producer merged these
faults into 14 distinct faults. The discussion of these 14
faults resulted in 25 discussion items. Resolutions were

113

I _ -.

__----__

3

1

4
5

2

I 1 I I I I
I I I

0 100 200 300

Member Functions

Figure 10: Discussion Activity

proposed for 12 faults, and all were accepted. per fault, and resolved all faults discovered.

LESSONS LEARNED
From using the AISA tool, we learned lessons about dis-
tributed asynchronous inspection, and about the use of
the Web as a collaborative infrastructure. Lessons we
learned were derived from questionnaires, e-mail mes-
sages, and discussions with inspection participants.

The artifacts for both inspections 2 and 3 were written
by the same experienced author, and they followed each
other chronologically in time, with many of the same
reviewers (already trained during inspection l),

Distributed, Asynchronous Inspection in the
Field
Practicality
Both professional developers and university students
reported that the AISA tool was useful. The profes-
sional developers at ICEM Systems have used AISA for
nine more inspections since we collected our data. The
graduate students were able to successfully inspect the
graphical artifacts, finding 7 of 10 seeded faults. 3

We hypothesize that the above differences are largely
due to inspection size. Inspection 2 was the largest
inspection (317 functions), and inspection 3 was the
smallest (49 functions). Participants commented that
inspection 2 contained too much material for them to
deal with. Inspection 3 was intentionally made small.

The learning curve for new AISA users was short. It
commonly took ICEM participants one inspection to
learn to use the tool. They were effective in using AISA
the second time they used it.

Synchronous inspections normally cover a limited
amount of material, so that the meetings remain short.
It might be hypothesized that asynchronous inspections
would have no such limitation, because such inspections
don’t require a meeting and allow people to perform in-
spection activities at their convenience, But our results
suggest that even asynchronous inspections have size
limitations.

Organization and Division of Material
Consistently, Inspections 2 and 3 produced the data fur-
thest from the mean values for the inspections. Inspec-
tion 2 had the fewest faults found by more than one
reviewer, the fewest discussion items per fault, and the
lowest rate of fault resolution within the meeting of any
inspection undertaken. Inspection 3 had the most faults
found by multiple reviewers, the most discussion items

AISA also allows all participants to view everyone’s col-
lected faults at all times. Other practitioners have pre-
vented reviewers from seeing each others’ faults while
they are entering their own faults, on the theory that
people would not enter faults they thought would dupli-
cate faults already entered[l3]. We have found that if
the inspection is of manageable size, many people would
enter duplicate faults, anyway. So fault collection does
not appear to be compromised.

3We considered this successful because the students were fiat
experts in the problem domain.

Decision-Making
Two closely-related issues in decision-making are: (1)

4

2

0 100 200 300
Member Functions

Figure 11: Fault Resolution

What issues are resolvable asynchronously? and (2)
What is the best may to resolve them? As we add com-
plexity to the decision support system, more faults can
theoretically be resolved asynchronously, but resolving
the simple faults becomes harder.

For four of the five ICEM inspections, some issues had
to be resolved after the asynchronous inspection ended.
The moderators noted that the issues that needed post-
inspection resolution meetings tended to be issues where
different parties had to compromise to reach agreement,
or where the author or a reviewer lacked the understand-
ing to come to a proper fault resolution.

The use of voting for decision support caused the most
difficulties with asynchronous inspection. Originally,
AISA was designed to suspend discussion while a vote
was being taken, to prod people to vote on an issue. The
graduate students found it v~as important that the dis-
cussion continue even when a proposal is outstanding,
so we added that before the ICEM inspections.

Even so, ICEM reviewers were dissatisfied with voting,
and questioned the need for a formal voting mechanism.
Essentially, they felt that the voting procedure was cum-
bersome for indicating agreement with simple fault cor-
rections, yet not capable of supporting decision-making
for comples issues.

There must be a lightweight method for reviewers to in-
dicate agreement with resolutions of simple faults (such
as “the second parameter to function X should be a
long integer, not a short integer”). It appears complex
issues may require post-discussion activity regardless of
decision support mechanism (even regardless of meeting
type [17]), so further research is needed before imple-
menting a rich, complex decision-support structure.

Depth of Discussion
We found that the ‘(depth” of the comments made in
asynchronous inspection was greater than that normally
seen in inspection meetings. We feel this is because
participants have a chance to compose their thoughts
before responding to comments, instead of having to
respond immediately as in a meeting. We especially
noted the following types of thoughtful discussion items.

Rebuttal: The author uses detailed examples to show
how an hypothesized fault is, in fact, correct.

Examples: A reviewer shows why a certain design leads
to a fault, or horn a certain fault resolution solves
a problem.

Citation: A participant refers to a publication or a pre-
vious design that they feel should be considered
before the discussion moves ahead. A useful vari-
ant on this is to reference an on-line Web source,
and to embed the link in the comment.

Development History
An idea formulated clearly in text becomes part of the
knowledge base; it can be archived and reused. Doc-
umenting designs through asynchronous threaded dis-
cussions can serve as a parallel communication channel
that can be used in concert with more traditional design
documentation to provide better understanding, and to
enhance traceability of development information [ll].

Asynchronous vs. Synchronous Inspection
Size of Inspection
We found that even in an asynchronous inspection
where meeting time was not an issue, the amount of
material to be reviewed must be kept small. Inspection
2 was too large; participants felt overwhelmed by the
amount of material.

Roles of the Participants
As happens in synchronous inspections, supporting the
notion of roles in AISA divided the work and respon-
sibility in our studies. The greater authority given to
the moderator role iu AISA came especially into play in
the ICEM inspections, where the moderator was truly
an expert on the subsystem under inspection.

Experiences of the Participants
Participants in all inspections found AISA easy to use
after a short learning curve. They appreciated being
able to work at a time of their choosing. One participant
also appreciated being able to use a a text-only (Lynx)
browser.

Unfortunately, the response time was found to be slow
at times, especially on intercontinental links. A mod-
erately fast Internet connection is clearly important for
participant satisfaction.

Cost-effectiveness
AISA makes inspection possible for distributed work-
groups in cases where inspection was impossible before
because of the costs of airfare and travel time, or cost
and clumsiness of holding a meeting by conference call.

Although we have not formally studied the relative costs
of synchronous vs. asynchronous inspection for col-
located workgroups, we observe the following points
concerning cost-effectiveness of synchronous vs. asyn-
chronous inspection:

l Fault collection with AISA takes about the same
time as it would for a traditional inspection, be-
cause the procedure is similar. In fact, people some-
times did fault collection by printing hard copies of
the material to review.

l Any items that can be resolved asynchronously re-
duce the time of any meeting, and possibly reduce
the number of participants needed at that meet-
ing. This cuts costs by improving time to market,

115

since it can take days before an inspection can be
scheduled [l].

The Web as a Collaborative Infrastructure
We discovered the Web to be useful as a collaborative in-
frastructure. Its greatest advantages that we saw were:

Availabila’&: The Web is widely available, making our
tool available to those who wish to try it. AISA is
simple to add to a corporate intranet, and to use
remotely (security permitting).

Portability: AISA can be used on any Web server sup-
porting CGI Web scripting and Perl. All setup and
installation is on the server side. Any client work-
station with a Web browser that can access the
server can be used. To use automatic identifica-
tion, the client and server must both run “identd”.

Familiarity: The Web’s familiarity to the participants
helped make the AISA learning curve short. People
didn’t need to learn any new infrastructures with
which they were unfamiliar. This familiarity also
allowed people to make clever use of its features,
for instance by embedding links in their comments.

But the Web is deficient in features found in some other
collaborative infrastructures on which we have imple-
mented a similar inspection tool. Lotus Notes has better
security and support for replication[20]. Suite[4] sup-
ports synchronous and asynchronous coupling, and bet-
ter automatic generation of collaborative user interfaces.

We were able to implement AISA, or a close approxi-
mation to it, on various infrastructures. We used the
Web for industrial inspections because of its ubiquity
and graphics support.

CONCLUSIONS
Distributed, asynchronous software inspection relaxes
the constraints that all participants work together at the
same time and in the same place. We have designed and
implemented AISA, a tool for distributed, asynchronous
inspection. We have inspected graphical artifacts in a
university setting, and textual artifacts in an industrial
setting with participants distributed across continents.
We use the results from these inspections as evidence to
evaluate the hypothesis that we introduced earlier:

Distributed, asynchronous software in-
spection can be a practical method for
software inspection of both graphical
and textual artifacts.

Our results support this hypothesis. We have developed
a tool that supports distributed, asynchronous software
inspection. We have used this tool to successfully in-
spect both graphical and textual software artifacts. We

116

were able to successfully inspect the textual artifacts us-
ing an inspection team spread among four locations on
two continents, with a seven hour time difference among
them. Participants and their management liked the tool
so well that they continued to use it for other work after
the study ended.

Distributed, asynchronous inspection removes the con-
straints that the participants work together at the same
time and place. It also gives everyone a chance to con-
tribute toward the meeting and pursue many discussions
of interest in parallel. The inspection comments are au-
tomatically placed in a structure that makes them easy
to use for future reference.

However, we feel that eliminating FtF meetings is not
desirable. Our studies show that not all the faults may
be easily resolved in an asynchronous environment, and
there may be a need for a synchronous meeting to re-
solve difficult faults, or to establish areas of common un-
derstanding. Moreover, asynchronous inspections make
the participants’ social interaction more difficult, losing
some of the beneficial aspects of FtF work, such as team
building[3].

We recommend that asynchronous inspection be used as
a complement to synchronous inspection for co-located
work groups. Asynchronous inspection should be per-
formed first to resolve the majority of the faults, and
provide valuable development history. Unresolved faults
that remain should be inspected in a subsequent syn-
chronous meeting.

Asynchronous inspection is especially useful when syn-
chronous inspection is infeasible. An example of this
would be inspection in geographically dispersed worl-
groups, for which the cost of synchronous inspection can
be prohibitive.

Future Work
Our experience with distributed, asynchronous software
inspection suggests a number of additional research
problems:

Inspection of Artifacts from Different Perspectives:
Many methods of software development (e.g., the
Unified Modeling Language [18]) involve looking
at the software requirements or design from differ-
ent (often graphical) perspectives. For instance, in
developing object-oriented reactive systems, one is
interested in both structural (e.g., the inheritance
hierarchy) and behavioral views (e.g., finite state
machines) of the system. An enhancement of dis-
tributed, asynchronous inspection would be to al-
low people to comment on an artifact in any view
in which it appeared, and allow those comments to
be seen by participants looking at other views of
the same artifact, or at related artifacts (such as

parents of the artifact in an inheritance hierarchy).

Comparison Among Types of Inspection: We have re-
ported that asynchronous inspection is feasible.
Furt,her, controlled studies ntould be required to
determine the relative effectiveness (including cost-
effectiveness) of FtF, distributed synchronous, and
dist,ributed asynchronous inspection where all three
forms were feasible.

Distribution and Asynchrony Applied to Other Soft-
ware Engineering Tasks: Our work thus far has
concentrated on applications of distribution and
asynchrony albstractions to software inspection.
Further studies covering the application of these
abstractions to a ntide range of software engineer-
ing tasks are required to assess the feasibility of
distributed, asynchronous software development.

ACKNOWLEDGEMENTS
We gratefully acknowledge the support of the Na-
tional Science Foundation (grant numbers iVSF/IRI -
9208546 and NSF/IRI - 9410857), ICEM Systems,
Inc., and the research funds of the Graduate School of
the University of Minnesota.

REFERENCES

PI

PI

PI

PI

I51

PI

PI

K. Ballman and L. Votta Organizational Congestion
in Large-Scale Software Development Third Interna-
tional Conference on the Software Process, October,
1994.

S. Bly, S. Harrison, and S. Irwin. Media spaces:
Bringing people together in a video, audio, and
computing environment. Communications of ACM,
36(1):28-47, Jan 1993.

L. Brothers, V. Sembugamoorthy, and M. Miller.
ICICLE: Groupware for code inspection. Proceedings
of Computer Supported Cooperative Work, pages
169-181, October 1990.

P. Deman and R. Choudhary. Coupling the User In-
terfaces of a Multiuser Program. ACM Z+ansactions
on Information Systems, December 1994.

P. Denan and J. Riedl. Toward computer-supported
concurrent software engineering. IEEE Computer,
January 1993.

C. Ellis, S. Gibbs, and G. Rein. Groupware: Some is-
sues and experiences. Communications of the ACM,
pages 39-56, January 1991.

M. Fagan. Design and code inspections to reduce er-
rors in program development. IBM System Journal,
15(3):182-211, 1976.

117

[S] G. Forte and R. Norman. A self-assessment by the
software engineering community. Communications
of the ACM, 35(4):28-32, April 1992.

[9] J. Gintell, J. Arnold, M. Houde, J. Kruszelnicki,
R. McKenney, and G. Memmi. Scrutiny: A Collabo-
rative Inspection and Review System. Proceedings of
the Fourth European Software Engineering Confer-
ence, Garwisch-Partenkirchen, Germany, Septem-
ber, 1991.

,

[lo] J. Gintell and G. Memmi. CIA: Collaborative In-
spection Agent experience: Building a CSCW appli-
cation for software engineering. Workshop on CSCW
Tools, October 1992.

[ll] 0. Gotel and A. Finkelstein Contribution Struc-
tures. Second IEEE International Symposium on
Requirements Engineering, March, 1995.

[12] W. Humphrey. Managing the Software Process. Ad-
dison Wesley, 1989.

[13] P. Johnson, D. Tjahjono, D. Wan, and R. Brewer.
Experiences with CSRS: An Instrumented Software
Review Environment. Proceedings of the Pacific
Northwest Software Quality Conference, October,
1993.

[14] V. Mashayekhi, J. Drake, W. T. Tsai, and J. Riedl.
Distributed collaborative software inspection. IEEE
Software, pages 66-75, September 1993.

[15] V. Mashayekhi, C. Feulner, and J. Riedl. CAIS:
Collaborative Asynchronous Inspection of Software.
Second AC’M SIGSOFT Symposium on the Founda-
tions of Software Engineering, December 1994.

[16] V. Mashayekhi, B. Glamm, and J. Riedl. AISA:
Asynchronous Inspector of Softsvare Artifacts. Uni-
versity of Minnesota Technical Report TR-96-028,
March 1996. (Available from first author.)

[17] A. Porter, L. Votta, and V. Basilli. Comparing De-
tection Methods for Software Requirements Inspec-
tions: A Replicated Experiment. IEEE l+ansactions
on Software Engineering, 21(6), June 1995.

[18] Rational Software Corporation Unified Mod-
eling Language for Real-Time Systems Design.
http://www.rational.com/pst/tech_papers/uml_rt.html,
V0.91, September, 1996.

[19] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modeling and De-
sign. Prentice Hall, 1991.

[20] C. Thompson and J. Riedl. Collaborative Asyn-
chronous Inspection of Software using Lotus Notes
University of Minnesota Technical Report TR-95-
047, June 1995. (Available from first author.)

-- __- -..- -

