Two Peers are Better Than One: Aggregating Peer Reviews
for Computing Assignments is Surprisingly Accurate

Ken Reily, Pam Ludford Finnerty, Loren Terveen
University of Minnesota, Department of Computer Science
4-192 EE/CS Building, 200 Union St SE, Minneapolis, MN, USA 55455
{kreily, ludford, terveen}@cs.umn.edu

ABSTRACT

Scientific peer review, open source software development,
wikis, and other domains use distributed review to improve
quality of created content by providing feedback to the work’s
creator. Distributed review is used to assess or improve the
quality of a work (e.g., an article). However, it can also
provide learning benefits to the participants in the review
process. We developed an online review system for begin-
ning computer programming students; it gathers multiple
anonymous peer reviews to give students feedback on their
programming work. We deployed the system in an intro-
ductory programming class and evaluated it in a controlled
study. We find that: peer reviews are accurate compared
to an accepted evaluation standard, that students prefer re-
views from other students with less experience than them-
selves, and that participating in a peer review process results
in better learning outcomes.

Categories and Subject Descriptors

K.3.1 [Computers and Education]: Computer Uses in
Education—Collaborative learning

General Terms

Design, Experimentation

Keywords

collaboration, peer review, education

1. INTRODUCTION

When one of Wikipedia’s thousands of volunteer editors
examines a recently changed article, that volunteer improves
the overall quality of the work by participating in a dis-
tributed review process. Domains such as scientific peer re-
view, industrial code review, open source software develop-
ment, and information filtering on sites like Slashdot, Digg,
or reddit also employ distributed review. We posit that the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GROUP’09, May 1013, 2009, Sanibel Island, Florida, USA.

Copyright 2009 ACM 978-1-60558-500-0/09/05 ...$5.00.

115

concept may improve education, too: student work (assign-
ments) may be distributed to a set of reviewers who assess
the work and provide formative feedback to the student. In
an educational setting, another — and perhaps, central ben-
efit — of distributed review is enhancing student learning.
This paper systematically evaluates the use of distributed
peer review in an in an introductory computer programming
class.

Prior work has explored this subject. However, previous
study of distributed review has left critical questions unan-
swered. First, there have been no controlled studies demon-
strating the benefits of distributed peer review in introduc-
tory programming classes. Second, using distributed peer
review in an educational setting raises a number of crucial
challenges, such as preserving student privacy and avoiding
“rogue” (e.g., retaliatory or collusive) reviews. This paper
examines these important issues. We developed a system to
facilitate the distributed review process for an introductory
programming class. We then conducted a controlled, quan-
titative study to determine if distributed peer reviews are
accurate and effective, to determine the impact the various
activities (reviewing, being reviewed) had on learning out-
comes, to assess the acceptability of peer review to students,
and to identify the extent to which problems like rogue re-
views occurred.

Today’s educators face the challenge of delivering high-
quality, individualized feedback to increasingly large classes.
The traditional approach to this problem — using the same
teaching and assessment techniques and requiring staff to
cover the extra work — does not scale. This challenge forces
us to look for new instructional and assessment techniques:
hence, our interest in peer review.

Distributed peer review differs from traditional group pro-
gramming projects because it uses a different time, different
place learning environment. This paradigm may prove bene-
ficial because computer programming assignments and long
papers lack a structure conducive to same place, same time
group learning; in fact, they have been identified as among
the worst possible group assignments [28]. We view dis-
tributed review as an alternate form of collaborative class-
room activity. Since it is used successfully in a variety of
real world contexts, we posit that it may work well in a
classroom setting.

We organize our work around the following research ques-
tions:

1. Accuracy of Peer Reviews: How accurate (relative
to an accepted standard) are peer reviews in a com-
puter programming class? This question is particularly

important since the “peers” doing the reviews will not
have advanced domain knowledge. We found that peer
reviews are accurate, that more reviews increases ac-
curacy, and that more sophisticated aggregation algo-
rithms help even more.

2. Review Effectiveness: Do students consider peer
reviews to be effective (helpful)? We found that stu-
dents generally found peer reviews effective, and that
they preferred peer reviews from students who had less
programming experience than they.

3. Impact on Learning Outcomes: How does partic-
ipating in peer review — whether writing or receiving
reviews, or doing both — affect learning outcomes? We
found that reviewing other students’ assignments re-
sulted in significantly higher performance in the course.

In the remainder of this paper, we discuss related work,
describe our peer review system, discuss our experimental
design, present and discuss our results in detail, and close
with a brief summary.

2. RELATED WORK

This section presents related work in 2 parts: related re-
search and existing system implementations.

2.1 Related Research

Previous research examines distributed review in a num-
ber of domains, including online communities. Lampe et
al [21] demonstrate the basic utility of distributed review on
Slashdot: they explore distributed comment moderation and
find that distributed reviewers promote high quality com-
ments and filter low quality ones. Cosley et al [6] study a
more specific facet of online community distributed review:
they examine the timing of the review process and conclude
that the end result of post-review is just as good in terms
of quality as pre-review. Like Lampe et al [21], we study
the general utility of distributed review, but we do so in a
classroom setting rather than in an online community. We
take a broader view than Cosley et al [6] as we look at the
end-to-end review process, rather than focusing the effects
of review timing.

A number of researchers study the benefits of peer review
in the classroom. Topping presents a comprehensive sur-
vey of peer review techniques in higher education [26], while
Bloom et al. [2] and Krathwohl et al. [20] posit that because
evaluation and criticism are high level skills in Bloom’s Tax-
onomy, students who participate in a peer review process
achieve a high order educational goal. Hamer [17] summa-
rizes benefits to using peer review in the classroom, including
increasing the quantity and timeliness of feedback, exposing
students to different techniques and styles, and encouraging
reflection on the course objectives through the review task.

Sullivan and Collofello [25], [5] and Gehringer [9], [10],
[11], [12] also examine peer review in the computer pro-
gramming classroom. While Gehringer cites a number of
benefits to using peer review as a classroom exercise, neither
he nor other researchers perform a systematic quantitative
evaluation of the accuracy (with respect to a standard) or of
learning benefits of peer review as we do. Trytten proposes a
design for team peer code review [29] and proposes that the
structure of the review exercise is nearly as important as the
exercise itself. We agree, and we incorporate this structured

116

approach into our electronic system for facilitating the re-
view process. Denning et al [7] examine in-class peer review
for computer programming classes. They create a model
for completing reviews quickly in a time-constrained class
(a “same time, same place” model). We instead employ a
“different time, different place” collaboration model that al-
lows reviewers to complete their reviews at a time and place
convenient for them.

One potential concern about using peer review in the
classroom is shilling or rogue reviewers — those reviewers
who, for a variety of reasons, give arbitrary scores regard-
less of submission quality. Hamer et al [17] propose an algo-
rithm for automatically calibrating peer review scores, how-
ever they evaluate their algorithm on simulated data only.
Here, we apply the algorithm to actual data.

In addition to the work specifically mentioned above,
Anewalt [1], Hamer [16], Wolfe [30], Trivedi [27], Silva [24],
Liu [22], and Gotel [14], [15] all present research that de-
scribes the design and implementation of systems and pro-
cesses for peer review in computer programming courses.
However, much of the previous work focuses on recounting
lessons learned from the implementation of the systems and
processes. Here, we design and conduct a controlled study
designed to determine the accuracy of peer review, what
makes a review effective, and the impact of the peer review
process on learning.

Beyond distributed review, there are other methods for
assessing the quality of work in a classroom setting. For
example, Foltz [8] proposes a technique for automatically
scoring essays using semantic analysis. However, it is not
clear if this technique can be applied to computer program-
ming or if it is widely used in the classroom.

2.2 Existing Systems

A number of web-based systems facilitate distributed re-
view. MpyReview (myreview.lri.fr), ConfTool (www.conf
tool.net), and Precision Conference (www.precision
conference.com) support peer review for academic confer-
ences. Peer Grader (PG) was an early web-based system for
submitting of computer programming assignments for peer
review [10]. In a later iteration, PG added resources for
teaching computer architecture [11]. Later, it evolved into
Expertiza, which used student peer review to improve an
unpublished textbook [13]. It is currently in classroom use
at North Carolina State University.

We considered using one of the aforementioned review
platforms for our research. However, they left key require-
ments unmet, for instance: (1) the existing classroom sys-
tems were domain independent and did not support pro-
gramming specific concepts like test cases and code char-
acteristics (see below for definitions). Since evaluating test
cases was a requirement for our peer review system, we built
our own. (2) We wanted assignment authors to provide
structured feedback for a review; we did not find any ex-
isting tools that did this. (3) Many systems we evaluated
are hosted at external web sites. Because we conducted our
study in a classroom, we had to meet strict data privacy
requirements, both legal (as specified in the United States
Federal Educational Rights Privacy Act) and institutional
(as specified by our University rules). Therefore, we decided
to implement our own peer review application.

algorlthm

@ ! subm|SS|on
. review |

6 feedback

Figure 1: Flowchart illustrating the submission and
review process.

3. PROCESS AND APPLICATION DESIGN

This section gives an overview of the application design
and the process it supports.

Users (students) play two roles in the peer review pro-
cess. Submission authors (hereafter called authors) create
and submit solutions to programming assignments. Review-
ers create structured reviews of assignments submitted by
authors. In our study, students were assigned either, both,
or neither of these roles.

The peer review process consists of the following steps (see
Figure 1):

1. Students submit their assignments via our web-based
submission application.

2. The application assigns each submission to be reviewed
by the course Teaching Assistant (TA) and three other
students using a randomization algorithm.

3. The application notifies all reviewers that the review
assignments are available in the system.

4. The TA and student reviewers complete and submit
their review by filling out a structured online form.

5. The application notifies the submission author after all
reviews are complete and ready for viewing.

6. The submission author then rates each review and pro-
vides free-form text feedback to the reviewer(s).

The review assignment algorithm is a simple random al-
gorithm with 2 obvious constraints: 1) students may not re-
view their own submissions, and 2) no student may review
the same submission more than once.

The reviewer provides feedback on the programming as-
signment through test cases and code characteristics.

Test Cases. Test cases measure the performance of the
submission against the assignment requirements. For ex-
ample, one requirement may be to sum two numbers. A
test case for this requirement may invoke the sum function
with the numbers 5 and 10 and verify that the result is 15.
One requirement may give rise to many test cases. Our
application requires reviewers to write a minimum number
of test cases (initially 3; later increased to 5 as assignment
complexity increased). However, reviewers were allowed to
write more. For each test case, the reviewer indicated an
outcome from the following choices: does not compile, fa-
tal error/crash, incorrect result(s), or correct result(s). We
used the rankings to measure performance on test cases.

Code Characteristics. Not all aspects of a computer
program can be assessed via test cases. For example, de-
termining whether an interface design is “good” or “bad”

117

and whether documentation is sufficient require human judg-
ment. Therefore, the application also lets reviewers rate the
submission’s code characteristics including formatting, ef-
fective use of conventions, documentation, interface design
usability, and modularity.

For each code characteristic, the reviewer indicates his or
her level of agreement with a statement about the charac-
teristic using a 5-point Likert scale. For example, for rating
documentation, the reviewer sees these statements: “The
code is well documented (commented). The comments are
written in the problem language and will be easy to main-
tain as the program changes over time. Comments are used
judiciously.”

The reviewer also can — and, in our study, was encouraged
to — provide text comments for each test case and code char-
acteristic. See Figure 2 for examples. We combined the out-
comes of the test cases with the numerical rating of the code
characteristics to produce a quantitative review score. The
review in Figure 2 resulted in a score of 94/100. This score
plays an important role in subsequent analysis; notably, it
lets us compare student and TA reviews quantitatively.

Author Feedback to Reviewer. Upon receiving their
review(s), the application required authors to give feedback
on the review by rating and commenting on four aspects
of the review: accuracy, helpfulness, reviewer knowledge,
and fairness. These feedback ratings provide a mechanism
for analyzing the effectiveness of different author/reviewer
pairings. Figure 2 shows a typical completed review with
feedback from the submission author.

4. EXPERIMENT DESIGN

We performed a controlled study to answer our research
questions in the Fall of 2008. An introductory Information
Systems class served as the backdrop for our study. The
first author of this paper was the instructor for the course
(which he had taught once previously.)

To review, we summarize our research topics: Research
Question 1: we compare student reviews to those of the TA
(the “gold standard”); Research Question 2: we measure re-
view effectiveness (helpfulness); Research Question 3: we
measure the impact of participating in peer review on learn-
ing outcomes.

We used a 2 x 2 experimental design. The two factors
were writing reviews (yes or no) and receiving reviews (yes
or no). Table 1 introduces names for each of the four re-
sulting groups — G-CONTROL, G-REVIEW, G-RECEIVE, and
G-BOTH — that we use throughout the paper. This exper-
imental design let us test separately the effect of receiving
and writing reviews as well as any added effect of doing both.
We wanted the four groups of students each to be represen-
tative of the course as a whole in terms of incoming grade
point average and prior programming experience. However,
we did not want to prejudice the course staff and researchers
about student performance. Therefore, we gave instructions
for creating groups to our university’s Office of Institutional
Research, and they assigned students to groups.

51 students began the semester and 45 students completed
it. This is a low drop-out rate for this course: for many
students, this is the first course in their major (Information
Systems), and some leave if they find it too challenging or
not to their interest. Of the 51 initial students, 25 were
in groups that received peer reviews (G-RECEIVE and G-
BoTH) and 25 were in groups that wrote peer reviews (G-

Currently logged in as

Description Results Outcome
803 Means of Means to enter exam Application provides options for user to enter scores. Correct
Input scores(First, Second and Last) Result(s)
804 Display Check for correctness of the Cumulativ . Correct
Cumulative | scores calculation Check if there Test case results with Result(s)
scores are means for displaying the outcomes allow
cumulative scores. .
| | e baced . . calculation of a
805 Display Display grades based on Grades are di H : Correct
Grades cumulative scores quantltatlve score. Result(s)
806 Data Any changes made in through Data remains persistent across the execution sessions. Correct
persistence | the application should reflect in Result(s)
the database outside the
programs execution scope, i.e.,
When program is rerun from
the beginning, changed data
must be reflected.
807 Invalid Application should gracefully Invalid inputs are properly handled with respect to "Record Grades Incorrect
Inputs handle invalid inputs. Some of | for an Exam" module. You application meets and endless loop when I | Result(s)
the invalid inputs are: Scores click "Display Instructors Grades for Semester” followed by clicking
below 0 or above 100 one of those entries . A message box stating "Please enter a numeric
Non-Numeric entries in scores. Value" pops up endlessly. This is probably because you have
incorporated data validation routine for the Data grid view which
check for all the tables displayed. Instead of identifying that certain
cells(such as names) contain non-numeric data, it just checks for
data being numeric or not.
5 Completed Test Cases (minimum 3 required).
Quality Response Comments
Code Agree +VEs Indenting is done properly. Codes are set to multiple lines if its lengthy. Easy to read. -ve You
Formatting have not grouped blocks of code. Instead all the code in a sub-procedure are grouped together. This
makes your code not perfect enough to Strongly agree with Formating aspect of it.
Conventions Strongly Coding conventions are followed.
Agree
Documentation | Strongly Well documented code. Suggestion: >> Have an inline document done every time you have an SQL

Agree statement. You could brief about what the SQL query is going to result in. >> Mention what will the data
adapter hold when ever you use OleDb.OleDbDataAdapter(sqlStrPostable, connstr)

Interface Strongly Very good job. I appreciate your efforts in adding legend. This is something I did not see in others
Design Agree assignment and had commented about.
Modularity Strongly Code is modularized.
Agree
Submitted to the author: Wed, Dec 3rd 2008, 14:54. Ratings allow the author
to provide feedback to
Assessment Ratings the reviewer.
Attribute Rating Comments
Accuracy Agree (4) I agree the assessment accurately describes the guality of my work.
Helpfulness Agree (4) The comments were constructive and helpful.
Reviewer Knowledge Agree (4) The reviewer adequately understands the materials.
Fairness Agree (4) The assessment was fair.
Total 16 *

* If this number is 12 or more, you are indicating that you find this assessment to be acceptable.

Home

Facilitated Assessment Tool v1.00

Figure 2: A typical completed review as seen by the submission author. The author’s ratings of the reviewer
appear at the bottom. This review resulted in a quantitative score of 94,/100.

118

Group Receives? | Writes? | Initial Final
#
G-CONTROL N N 13 13
G-REVIEW N Y 13 10
G-RECEIVE Y N 13 11
G-BoTH Y Y 12 11

Table 1: Our 2x2 design for analyzing how the differ-
ent learning activities (reviewing, being reviewed)
impact learning outcomes along with the initial and
final sizes for each group.

REVIEW and G-BoTH). Table 1 shows initial and final sizes
for each group.

All students in the course used the review software to sub-
mit six programming assignments. Students in G-REVIEW
and G-BoTH each reviewed 1 to 3 submissions for each of
the six assignments. Students in G-RECEIVE and G-BOTH
received up to 3 peer reviews for each assignment. Having
up to 3 student reviewers for each submission gave authors
multiple sources of feedback and let us test how using dif-
ferent number of peer reviews (one, two, or three) affected
accuracy. Students in G-CONTROL did not write reviews
and did not receive peer reviews. However, like all students,
they received reviews from the course Teaching Assistant
(TA). Authors did not know whether a review came from the
TA or a fellow student.

To measure the accuracy of student reviews, we used re-
views from the TA as the “gold standard”. The TA was a
Computer Science Master’s degree candidate with significant
industry programming experience. Of course, TA grades are
not a foolproof or an absolute measure of submission qual-
ity; nonetheless, they are the accepted standard for course
work at our University and generally throughout higher ed-
ucation.

To measure student opinions about the process and to in-
form the quantitative results, students completed pre-study
and post-study surveys. The pre-survey was the same for
all participants. We prepared somewhat different versions
of the post-survey for each of the four study groups.

To ensure fairness to the students, assignment scores were
based solely on the TA’s review. In addition, because our
school has a median grading policy, final letter grades for the
students were assigned with respect to their study group and
not the class as a whole. This is because of the potential that
review activities could lead to different learning outcomes for
each group (which we report on below).

S. RESULTS

We organize the discussion of our results around our three
research questions.

5.1 Accuracy of Peer Reviews

During the study semester, we collected 378 individual
peer reviews for the six programming assignments. We ana-
lyzed the accuracy of the reviews under several aggregation
schemes.

Students rated submissions similar to the TA, but
more harshly. We calculated the quantitative score for
each review and then compared the scores of the TA and
student reviews. We calculated the score by giving the test
cases a 75% weight and giving the code characteristics a

119

Correlation vs. Student Reviewers

0.80
0.787

0.784
0.769

0.764
0.750

0.74

0.724

Correlation w/TA Score

0.70

0.684 0.67

1 2 3
of Student Reviewers

T
Hamer

Figure 3: The correlation of of student review scores
to those of the TA increases as you increase the num-
ber of student reviewers. “Hamer” is the result of
applying Hamer’s calibration algorithm. Note the y
axis does not start at 0.

25% weight. If we correlate the TA score with each individ-
ual student score, we get a Pearson coefficient (r) of 0.679,
which is marked correlation. 24.6% of student review scores
(93 out of 378) were higher than the TA’s score (for the
corresponding author and assignment), 17.2% of student re-
view scores (65 out of 378) were equal to the TA’s score
(for the corresponding author and assignment), and 58.2%
of student review scores (220 out of 378) were lower than
the TA’s score. On average, student review scores were 2.6
points (out of 100) lower than the TA’s score.

Aggregating multiple student reviews improves ac-
curacy. On average, the correlation between the mean of
any two student review scores and the TA’s score (for the
same assignment and author) was 0.750. Taking the mean of
all three student reviews improved r even further to 0.769.

Smart aggregation improves accuracy even more.
A simple average of student review scores may not be the
best technique. In addition, student reviewers could adopt
a number of rogue strategies. For instance, they may give
every submission a perfect score out of laziness, or they may
be particularly aggressive in trying to “break” the author’s
program by giving it input they know will never be pro-
cessed correctly. To avoid such problems, Hamer et al [17]
designed an iterative algorithm for automatically calibrating
peer review scores. Applying Hamer’s algorithm to our data
improves the correlation to 0.787. The improvement is min-
imal over the naive approach (3-student mean). However,
Hamer’s algorithm provides additional information about
the quality of student reviews that can be used to provide
an incentive for students to write good reviews. In particu-
lar, it computes weights that indicate each reviewer’s overall
agreement with the consensus of all reviewers. These weights
may provide a mechanism for rewarding the most accurate
reviewers. (Note that reviewing systems for academic con-
ferences sometimes present such data to reviewers as a self-
assessment aid.) The algorithm also provides a mechanism
for detecting potential plagiarism.

Figure 3 summarizes the correlation improvement as we
aggregate more student scores and then apply Hamer’s al-
gorithm.

Survey. The survey provided additional insight into the
accuracy of peer reviews. 15 of 21 student reviewers agreed
that they had the competence necessary to review other stu-
dents’ work. In addition, 17 of 21 student reviewers indi-
cated that they reviewed other students’ work fairly. Stu-
dents receiving the reviews seemed to agree: 15 of 22 stu-
dents who received peer reviews indicated the other stu-
dents’ reviewed their assignments fairly, and 13 of 22 stu-
dents who received peer reviews indicated that the other
students had the competence necessary to do the reviews.
Only 4 of the 22 students who received peer reviews indi-
cated that, based on their experience in this course, they
would not want to take another course that used peer re-
view.

5.1.1 Review Accuracy Discussion

Our results showed that multiple peer reviews were accu-
rate proxies for an individual expert review, even when the
peers were novices. Previous research found that multiple
peer reviews can even outperform individual expert review
in certain situations [3]. Using peer reviews as a means to
improve work quality and enhance learning seems relatively
unproblematic. And the thought that peer reviews could be
used to reduce the amount of work required from a teaching
assistant is appealing. However, the last step — using peer
reviews in computing course grades — raises some significant
challenges, notably: rogue (dishonest or poor quality) re-
views and comprehending or questioning grades. We now
discuss this issue.

Taming the rogue review: incentives for honest re-
views. In any system where participants review each other,
there are a number of factors that may lead to untrustworthy
or “rogue” reviews. Using peer reviews for grading purposes
raises more factors. Here are the main reasons we consider:

1. Retaliation — participant X gives an undeserved nega-
tive review to person Y in response to a (perhaps de-
served) negative review that person Y gave to person
X (Resnick et al. studied this issue in EBay [23]).

2. Collusion — two participants agree to give each other
high (and perhaps undeserved) reviews.

3. Competition — participants compete for some limited
resource, e.g., grant money, acceptance at a highly se-
lective academic conference, or (most relevant here) a
top grade in a course that is graded “on the curve”.
The latter issue was at play in our work: our college
limits the number of top grades (B+ and above) that
may be assigned in a class. Thus, a student might
reason that he or she could move “up the curve” by
grading other students harshly. The same reasoning
applies in academic peer review; conflict of interest
policies and mechanisms like double-blind reviews are
used to combat such temptations.

4. Laziness — it takes effort to write a good review. A stu-
dent might reason that the effort would be better spent
on improving his or her programming assignments, and
thus submit a shallow, ill-considered review.

We anticipated several of these situations and tried to cre-
ate incentives to head them off. First, students who wrote
reviews (i.e., groups G-REVIEW and G-BOTH) were required
to submit their reviews before receiving their assignment

120

score. This was designed to ensure timely completion of
reviews. Second, authors rated each review they received.
While we did not use these ratings in computing reviewers’
course grades, they could have been used for this purpose.
This would be a strong incentive for writing honest and sub-
stantive reviews. Further, the quality of a review could be
estimated objectively, e.g., based on the amount of text and
the distance between its score and the average score of all
reviews. Finally, to try to prevent “laziness” due to the ef-
fort of reviewing, we explicitly considered writing reviews as
a course activity, adjusted the course workload accordingly,
and communicated this to students.

In practice, we saw little or no evidence of rogue review-
ing. A few students did express worries. Some reviewers said
they were concerned that authors might retaliate if they (the
reviewers) gave low scores. Four or five reviewers told the
instructor that they suspected receiving retaliatory ratings
in such cases. We did analysis to try to quantify whether
retaliation was occurring; specifically, we correlated review
scores and corresponding review ratings from the submission
authors. The correlation was weak (r = 0.216). We also dis-
covered several instances of collusion where pairs of students
realized that they had received each other’s assignments to
review and then agreed to give each other positive reviews
and ratings. Collusion could be prevented by a number of
methods, such as an algorithm that provides for specifying a
minimum transitive distance between author /reviewer pairs.
This is a likely candidate for further research.

Despite little evidence of rogue review, this issue clearly
requires more work if peer reviews are to be used in assigning
grades. Algorithms (like Hamer’s) can help identify rogue
reviews. More importantly, inventive systems could prevent
rogue reviews in the first place.

Comprehending aggregated peer review grades.
Under a traditional grading system, when students don’t
understand or agree with their grades, they go complain
to the TA or instructor. However, what should they do
if their grade is based on some mechanical aggregation of
scores from multiple anonymous peers?

Our post-survey illustrates that students are concerned
about this issue. While only 3 of 22 students reported that
they had problems raising grading issues with the TA, 10 of
those same 22 students expressed concern that they would
have no way to dispute or appeal peer review scores. In
addition, students who received peer reviews disliked the
idea of using them as a grade determinant: 15 of the 22 stu-
dents disagreed with the statement, “Receiving reviews from
3 other students on my programming assignments would be
an acceptable substitute to receiving an assessment from the
TA”

Next, while TA assessments are not perfect, replacing or
complementing them with a complex aggregation of peer
reviews may not provide sufficient understanding of why
they received a particular score. While students compre-
hend written feedback from the TA (e.g. “You lost 5 points
because you did not do x”), receiving multiple peer reviews
from peers along with an aggregate score may leave the stu-
dents without a clear understanding of what caused them
to lose points or what actions they can take on a future
assignment to improve.

Explanation systems might improve the comprehensibil-
ity of grades based on peer reviews. Explaining decisions
reached by computational systems in order to make them

more acceptable to people is a well-established research topic.
Herlocker et al. [18] developed and evaluated a number of
explanation interfaces for recommender systems. More rel-
evant to our concerns is the work of Clancey [4]. He showed
how it wasn’t enough for a medical expert system to make
accurate diagnoses; it also had to convince physicians that
these diagnoses were right. It turned out that to compute
convincing explanations, it wasn’t enough to just describe
the expert system’s reasoning process; the reasoning pro-
cess had to be re-designed so that it was comprehensible
to people. Likewise, we will need explanations along with
aggregation algorithms for peer review systems to be accept-
able for classroom use.

5.2 Review Effectiveness

On the post-survey, 14 of 22 student authors (i.e., mem-
bers of groups G-BOTH and G-RECEIVE) reported receiving
3 or more effective reviews over the course of the study. To
further understand review effectiveness, we carried out anal-
ysis (described below) based on the ratings authors gave to
the reviews they received. Recall that section 3 detailed the
rating criteria: accuracy, helpfulness, reviewer knowledge,
and fairness.

Using peer review in a classroom setting raises the ques-
tion of whether students — who are just learning the material
— are qualified to review the work of other students. A rea-
sonable intuition would be that the more students know,
the better reviewers they would be. Students seemed to
share this intuition: the survey results showed that stu-
dents ranked “A reviewer with more experience than me”
as the second most important factor in judging review qual-
ity. However, our results were not consistent with students’
intuitions: in fact, students preferred reviews from other
students with similar experience.

We computed these results using authors’ ratings of re-
views and the pre-survey. The pre-survey asked students
to rate their own programming experience and to indicate
the number of prior computer programming courses they
had taken. We then divided all the review-ratings (i.e., au-
thors’ rating of reviews) into four sets, based on the relative
self-reported experience of the author and reviewer: ratings
of the reviews they received into four groups based on the
relative experience level of the reviewer and author:

e Author Ratings where the author had more program-
ming experience.

e Equal Ratings where the author and reviewer had
equal experience.

e Reviewer Ratings where the reviewer had more more
programming experience.

e TA Ratings of reviews by the TA.

An ANOVA shows a statistically significant difference in rat-
ings between the four groups (p < 0.01). Follow-up pair-
wise Tukey tests show that all differences between groups
were significant, with the exception of the Author and TA
pair. Two major observations can be drawn from these re-
sults. First, students’ self-reported preference for reviews
from more experienced peers was not supported; in fact, stu-
dents liked reviews from more experienced peers least of all.
Second, students liked reviews from less experienced peers as
much as reviews from the course TA. While the TA almost

121

Rating Means by Experience Group

95% CI for the Mean

4.8

4.7

4.6+

Rating

4.5

4.44

4.3

T T
Equal Reviewer
Experience Group

Aut‘hor

Figure 4: Author ratings of reviewers were divided
into groups based on self-reported experience lev-
els. Reviewers with more experience than the au-
thor fared the worst. Note the y axis does not start
at 0.

certainly had a significantly higher experience level than all
students, note that the TA has received training on writ-
ing effective reviews and his or her continued employment
at the school depends on doing the job effectively. Figure 4
shows the average ratings by group based on self-reported
experience levels.

However, we wondered whether students did not accu-
rately assess their experience level on the pre-survey. Or, put
another way, perhaps self-rated experience level doesn’t cor-
relate well with programming knowledge. Additional data
analysis lets us investigate the effect of differential program-
ming knowledge more objectively. The idea is to take final
course performance (grade) as a measure of knowledge. We
define P. to be the overall course performance of the re-
viewer and P, to be the overall course performance of the
author. Then AP = P, — P, represents the difference in
course performance between the reviewer and the author
(a proxy for differential knowledge). A positive AP repre-
sents a case where the reviewer outperformed the author,
and a negative AP represents a case where the author out-
performed the reviewer. Figure 5 shows a regression of the
review rating vs. this performance differential. While there
are lots of data points (n = 1412) that are fairly scattered
(r? is relatively low), the downward trend is obvious.

According to students, the first and third highest ranked
factors contributing to an effective review were the quality
and quantity of written feedback. Quality is subjective and
thus hard to quantify. However, we did check whether the
quantity of written feedback in a review correlated with the
author’s rating. It did not (r = —0.073,p = 0.172).

Discussion. Students’ general intuition — that they want
reviewers from more knowledgeable peers — did not correlate
with their actual ratings of the reviews they received — they
rated reviews from (apparently) less knowledgeable peers
more highly. However, while we found this surprising, other
research suggests that perhaps we should not have. Hinds
identified a “cognitive handicap” that experts have when at-
tempting to identify with the skill set of a novice [19]. Cho
examined the impact of novice peer-based knowledge refine-
ment in knowledge management systems [3]. In both cases,

Assessment Ratings vs. Performance Differential
value = 4,561 - 0.005671 perf_diff

Regression
— — 8%

5.0+

H 0537654
R-Sq 1.8%
R-Sa(adi) 1.4%

4.5 4

4.0

3.5

Assessment Rating

3.0

r T T r T T T T T
-40 -30 -20 -10 a 10 20 30 40
Performance Differential

Figure 5: A regression of review ratings vs. per-
formance differential. A high performance differ-
ential indicates the reviewer significantly outper-
formed the author in the course. Note the y axis
does not start at 0.

the researchers found fellow novices to be as good, if not bet-
ter, than experts at performing certain tasks that involved
assessing the quality or predicting the performance of other
novices. Finally, Zhang et al [31] also speculate that ex-
pertise networks based on the users with highest absolute
expertise may encounter some strain. They propose a “just
better” model that balances the network using a hierarchical
approach where users’ questions are answered by other users
with slightly more experience than themselves. This model
might provide the basis for an improved classroom review
system.

5.3 Impact on Learning Outcomes

To measure learning outcomes, we calculated an aggregate
score (out of 100%) for each student across all assignments
and exams. The average score for for the control group
was the lowest of the four groups (87.7%); the average score
for students who both wrote and received reviews (G-BOTH)
was highest (95.2%). An ANOVA showed that the difference
between the groups was not significant, although there was
a strong trend (p = .1).

We also hypothesized that students who acted as peer
reviewers would perform better in the course because (a)
seeing other students’ approaches to the same programming
assignments would help reviewers learn other paths to a vi-
able solution, and conjectured that this knowledge, which
one cannot get from TA-grading only or being reviewed
by peers only, would prove valuable. (b) Assessing other
students’ work requires significant cognitive effort: review-
ers had to determine whether their peer’s work was cor-
rect, and have some understanding of why it was right or
wrong. We also thought this would boost learning. To
test our hypothesis, we performed a t-test, comparing stu-
dent performance in G-REVIEW and G-BOTH (reviewer con-
ditions) vs. performance in G-CONTROL and G-RECEIVE
(non-reviewer conditions). Reviewers (mean performance
93.406) performed better than non-reviewers (mean perfor-
mance 88.78), and the differences were statistically signifi-
cant (p = 0.04, t=2.1167, df 43, std err of difference 2.185).

We also wondered whether receiving feedback from peer

122

Study Group vs. Course Performance
95% CI for the Mean

1.00
@ 0.95- E
1=
c
[
E
o
5 0.904
a
Q
4
3
Q
O 0.85

0.80

1 2 3 4
Group

Figure 6: An interval plot of course performance
vs. study group. Group 1 is the control group (G-
CoNTROL) that did not participate in any peer review
activities, while group 4 both wrote and received
reviews (G-BoTH). Note the y axis does not start at
0.

reviewers would boost performance, so we performed a t-test
comparing students who received peer reviews verses those
who did not, but differences were not statistically significant.

Figure 6 shows an interval plot illustrating the learning
outcomes for each group.

Discussion. The study survey offered further support
for the idea that participating in peer review activities en-
hanced learning. Several students noted that the process of
reviewing others’ work was surprisingly informative, indicat-
ing that they would often look at the submissions they were
assigned to review for ideas of how to improve their own
programming. When asked what they learned by reviewing
the work of other students, responses included:

e “Different methods for doing things that were more
efficient than my own.”

e “Different programming techniques for problems I had
issues with”

e “By viewing other’s programs it allowed me to think
more critically about my own.”

e “New ways of coding, different methods. Finally, how
students read requirements differently.”

Overall, eight of 20 student reviewers agreed that they learned
from reviewing other students’ work, and five of 20 dis-
agreed. These findings suggest there is potential for peer re-
view to enhance learning in computer programming classes.

6. CONCLUSION

This paper presents promising results concerning peer re-
view for learning computer programming. We showed that
peer reviews were accurate compared with a reasonable stan-
dard (a TA with industry experience). We also showed that
students find reviews from other students with less experi-
ence to be most effective. Finally, we showed that reviewing
other students’ programming assignments increases overall
learning outcomes. We also identified key issues for future

research, including developing incentive systems for elicit-
ing honest reviews, algorithms for matching reviewers with
authors, and review aggregation algorithms that are com-
prehensible to students. These findings illustrate the vast
potential for distributed review in the classroom and be-

yond.
7. REFERENCES
[1] ANEwALT, K. Using peer review as a vehicle for

[12]

communication skill development and active learning.
J. Comput. Small Coll. 21, 2 (2005), 148-155.
Broowm, B., ENGLEHART, M. D., Furst, E. J., HiLL,
W. H., AND KRATHWOHL, D. R. Tazonomy of
Educational Objectives: The Classification of
Educational Goals - Handbook 1: Cognitive Domain.
David McKay Company, Inc., New York, 1956.

CHo, K., CHUNG, T. R., KING, W. R., AND
ScHUNN, C. Peer-based computer-supported
knowledge refinement: an empirical investigation.
Commun. ACM 51, 3 (2008), 83-88.

CLANCEY, W. J. From guidon to neomycin and
heracles in twenty short lessons. AT Mag. 7, 3 (1986),
40-60.

COLLOFELLO, J. S. Teaching technical reviews in a
one-semester software engineering course. In SIGCSE
’87: Proceedings of the eighteenth SIGCSE technical
symposium on Computer science education (New
York, NY, USA, 1987), ACM, pp. 222-227.

CosLEY, D., FRANKOWSKI, D., TERVEEN, L., AND
RieDL, J. Using intelligent task routing and
contribution review to help communities build
artifacts of lasting value. In CHI ’06: Proceedings of
the SIGCHI conference on Human Factors in
computing systems (New York, NY, USA, 2006),
ACM, pp. 1037-1046.

DeEnNING, T., KELLY, M., LINDQUIST, D., MALANI,
R., GriswoLD, W. G., AND SIMON, B. Lightweight
preliminary peer review: does in-class peer review
make sense? In SIGCSE ’07: Proceedings of the 38th
SIGCSE technical symposium on Computer science
education (New York, NY, USA, 2007), ACM,

pp- 266-270.

Forrz, P. W., LAHAM, D.; AND LANDAUER, T. K.
Automated essay scoring: Applications to education
technology. In Proceedings of ED-MEDIA (1999),

pp- 939-944.

GEHRINGER, E. Strategies and mechanisms for
electronic peer review. Frontiers in FEducation
Conference, 2000. FIE 2000. 30th Annual 1 (2000),
F1B/2-F1B/7 vol.1.

GEHRINGER, E. F. Electronic peer review and peer
grading in computer-science courses. SIGCSE Bull.
38, 1 (2001), 139-143.

GEHRINGER, E. F. Electronic peer review builds
resources for teaching computer architecture. In
Proceedings of the 2003 American Society for
Engineering Education Annual Conference &
Ezposition (2003), American Society for Engineering
Education.

GEHRINGER, E. F., CHINN, D. D., MANUEL A.
PEREZ-QUI N., AND ARDIS, M. A. Using peer review
in teaching computing. In SIGCSE ’05: Proceedings of

123

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

the 86th SIGCSE technical symposium on Computer
science education (New York, NY, USA, 2005), ACM,
pp- 321-322.

GEHRINGER, E. F., EHRESMAN, L. M., AND SKRIEN,
D. J. Expertiza: students helping to write an ood
text. In OOPSLA ’06: Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming
systems, languages, and applications (New York, NY,
USA, 2006), ACM, pp. 901-906.

GOTEL, O., SCHARFF, C., AND WILDENBERG, A.
Extending and contributing to an open source
web-based system for the assessment of programming
problems. In PPPJ ’07: Proceedings of the 5th
international symposium on Principles and practice of
programming in Java (New York, NY, USA, 2007),
ACM, pp. 3-12.

GOTEL, O., SCHARFF, C., AND WILDENBERG, A.
Teaching software quality assurance by encouraging
student contributions to an open source web-based
system for the assessment of programming
assignments. In ITiCSE ’08: Proceedings of the 13th
annual conference on Innovation and technology in
computer science education (New York, NY, USA,
2008), ACM, pp. 214-218.

HAaMER, J., KELL, C., AND SPENCE, F. Peer
assessment using aropd. In ACE ’07: Proceedings of
the ninth Australasian conference on Computing
education (Darlinghurst, Australia, Australia, 2007),
Australian Computer Society, Inc., pp. 43-54.
HAMER, J., MaA, K. T. K., AND KwoNG, H. H. F. A
method of automatic grade calibration in peer
assessment. In ACE ’05: Proceedings of the 7th
Australasian conference on Computing education
(Darlinghurst, Australia, Australia, 2005), Australian
Computer Society, Inc., pp. 67-72.

HERLOCKER, J. L., KONSTAN, J. A., AND RIEDL, J.
Explaining collaborative filtering recommendations. In
CSCW ’00: Proceedings of the 2000 ACM conference
on Computer supported cooperative work (New York,
NY, USA, 2000), ACM, pp. 241-250.

HinDps, P. J. The curse of expertise: The effects of
expertise and debiasing methods on predictions of
novice performance. Journal of Experimental
Psychology: Applied 5, 2 (1999), 205-221.
KRATHWOHL, D. R., BLooM, B. S., AND MaAsIA, B.
Taxonomy of Educational Objectives: The
Classification of Educational Goals - Handbook 2:
Affective Domain, 1 ed. Longman, London, UK, July
1964.

LamPE, C., AND RESNICK, P. Slash(dot) and burn:
distributed moderation in a large online conversation
space. In CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems
(New York, NY, USA, 2004), ACM, pp. 543-550.
Liu, E. Z.-F., LiN, S., CHiu, C.-H., AND YUAN,
S.-M. Web-based peer review: the learner as both
adapter and reviewer. Education, IEEE Transactions
on 44, 3 (Aug 2001), 246-251.

RESNICK, P., KUWABARA, K., ZECKHAUSER, R., AND
FRrRIEDMAN, E. Reputation systems. Commun. ACM
43, 12 (2000), 45-48.

[24] SiLva, E., AND MOREIRA, D. Webcom: a tool to use

peer review to improve student interaction. J. Educ.
Resour. Comput. 3, 1 (2003), 3.

SULLIVAN, S. L. Reciprocal peer reviews. In SIGCSE
’94: Proceedings of the twenty-fifth SIGCSE
symposium on Computer science education (New
York, NY, USA, 1994), ACM, pp. 314-318.
ToprPPING, K. Peer assessment between students in
colleges and universities. Review of Educational
Research 68, 3 (1998), 249-276.

TRrRIVEDI, A., KAR, D. C., AND
PATTERSON-MCNEILL, H. Automatic assignment
management and peer evaluation. J. Comput. Small
Coll. 18, 4 (2003), 30-37.

TRYTTEN, D. Progressing from small group work to
cooperative learning: a case study from computer
science. Frontiers in Education Conference, 1999. FIE
’99. 29th Annual 2 (1999), 13A4/22-13A4/27 vol.2.

[29] TRYTTEN, D. A. A design for team peer code review.

In SIGCSE ’05: Proceedings of the 36th SIGCSE
technical symposium on Computer science education
(New York, NY, USA, 2005), ACM, pp. 455-459.
WoLFE, W. J. Online student peer reviews. In CITC5
"04: Proceedings of the 5th conference on Information
technology education (New York, NY, USA, 2004),
ACM, pp. 33-37.

ZHANG, J., ACKERMAN, M. S.; AND ADAMIC, L.
Expertise networks in online communities: structure
and algorithms. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web (New
York, NY, USA, 2007), ACM, pp. 221-230.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

