
Don’t Look Stupid:
Avoiding Pitfalls when Recommending Research Papers

Sean M. McNee, Nishikant Kapoor, Joseph A. Konstan
GroupLens Research

Department of Computer Science and Engineering
University of Minnesota

Minneapolis, Minnesota 55455 USA
{mcnee, nkapoor, konstan}@cs.umn.edu

ABSTRACT
If recommenders are to help people be more productive, they need
to support a wide variety of real-world information seeking tasks,
such as those found when seeking research papers in a digital
library. There are many potential pitfalls, including not knowing
what tasks to support, generating recommendations for the wrong
task, or even failing to generate any meaningful recommendations
whatsoever. We posit that different recommender algorithms are
better suited to certain information seeking tasks. In this work,
we perform a detailed user study with over 130 users to
understand these differences between recommender algorithms
through an online survey of paper recommendations from the
ACM Digital Library. We found that pitfalls are hard to avoid.
Two of our algorithms generated ‘atypical’ recommendations—
recommendations that were unrelated to their input baskets. Users
reacted accordingly, providing strong negative results for these
algorithms. Results from our ‘typical’ algorithms show some
qualitative differences, but since users were exposed to two
algorithms, the results may be biased. We present a wide variety
of results, teasing out differences between algorithms. Finally, we
succinctly summarize our most striking results as “Don’t Look
Stupid” in front of users.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – information filtering, relevance feedback,
retrieval models

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Personalization, Recommender Systems, Human-Recommender
Interaction, Collaborative Filtering, Content-based Filtering,
Information Seeking, Digital Libraries

1. INTRODUCTION
Recommender systems are supposed to help users navigate
through complex information spaces by suggesting which items a
user should avoid and which items a user should consume. They
have proven to be successful in many domains, including Usenet
netnews [15], movies [10], music [28], and jokes [7], among
others. Even more, recommenders have transitioned from a
research curiosity into products and services used everyday,
including Amazon.com, Yahoo! Music, TiVo, and even Apple’s
iTunes Music Store.

Yet, with this growing usage, there is a feeling that recommenders
are not living up to their initial promise. Recommenders have
mostly been applied to lower-density information spaces—spaces
where users are not required to make an intensive effort to
understand and process recommended information (i.e. such as
movies, music, and jokes) [13]. Moreover, recommenders have
supported a limited number of tasks (i.e. a movie recommender
can only help find a movie to watch). Can recommenders help
people be productive, or only help people make e-commerce
purchasing decisions? Herlocker et al. stated it best when they
said, “There is an emerging understanding that good
recommendation accuracy alone does not give users of
recommender systems an effective and satisfying experience.
Recommender systems must provide not just accuracy, but also
usefulness.” [9] (Emphasis in original)

But what is usefulness? We believe a useful recommendation is
one that meets a user’s current, specific need. It is not a binary
measure, but rather a concept for determining how people use a
recommender, what they use one for, and why they are using one.
Current systems, such as e-commerce websites, have predefined a
user’s need into their business agendas—they decide if a system is
useful for a user! Users have their own opinions about the
recommendations they receive, and we believe if recommenders
should make personalized recommendations, they should listen to
users’ personalized opinions.

There are many recommender pitfalls. These include not building
user confidence (trust failure), not generating any
recommendations (knowledge failure), generating incorrect
recommendations (personalization failure), and generating
recommendations to meet the wrong need (context failure),
among others. Avoiding these pitfalls is difficult yet critical for
the continued growth and acceptance of recommenders as
knowledge management tools.

This concern is of even greater importance as recommenders
move into denser information spaces—spaces where users face

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW'06, November 4–8, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-59593-249-6/06/0011...$5.00.

171

serious challenges and the cost of failure is high. One such space
is that of researchers seeking peer-reviewed, published work from
a digital library. In previous work, we generated
recommendations for computer science research papers [21]. In
that paper and in follow-up work, we found that not only could
recommenders generate high quality recommendations in this
domain, but also users felt that various recommender algorithms
generated qualitatively different, yet meaningful, recommendation
lists [21, 31]. Even though this work was in a denser information
space of a digital library, it only supported one task: find more
citations for a given paper.

To make recommenders more useful, we believe they must
support multiple information-seeking tasks. To test this, we build
on previous results. We hypothesize that the differences between
algorithms are quantifiable and predictable, and these differences
are meaningful and valuable for end users. That is, some
algorithms are better suited for particular user information-
seeking tasks. We believe that matching users, and their specific
tasks, to the appropriate algorithm will increase use satisfaction,
efficiency, and the usefulness of the recommender system.

We will use Human-Recommender Interaction theory as our
grounding to test these hypotheses. Human-Recommender
Interaction (HRI) is a framework and process model for
understanding recommender algorithms, users, and information
seeking tasks [18-20]. It takes a user-centric view of the
recommendation process, shifting the focus of attention from the
system and associated algorithms to the (possibly repeated)
interactions users have with such systems. By describing
recommendation lists using descriptive keywords (called
Aspects), HRI provides a language to articulate the kinds of items
that would best meet a user’s information seeking task. For
example, an experienced user may want a high level of Boldness
and Saliency from a recommender, where as a novice may want
more Transparent and Affirming recommendations. See Figure
1-1 for an overview of HRI Aspects.

In this paper, we report on a user study of over 130 users on
research paper recommendations we generated from the ACM
Digital Library using several different recommender algorithms.
We asked users about the suitability of these algorithms for
different information seeking tasks, as well as for their opinions
on the recommendation lists across multiple dimensions,
dimensions based on HRI.

2. DIGITAL LIBRARIES, INFORMATION
SEEKING TASKS, AND RECOMMENDERS
A main tenet of HRI is that recommenders need to tailor
recommendation lists not just to a user, but to a user’s information
seeking task. To understand this, we will review information

seeking theory, present example tasks in a DL environment,
reflect on how recommenders change digital libraries, and finally
explain how to apply HRI in this domain.

Information seeking theory provides us with a framework to
understand user information needs and context. Models of
information seeking behavior, including Taylor’s Four Stages of
Information Need, Wilson’s Mechanisms and Motivations model,
Dervin’s theory of Sense Making, and Kuhlthau’s Information
Search Process [5, 16], reveal the ways in which emotion,
uncertainty, and compromise affect the quality and nature of a
user's information search and its results. More recently,
Information Foraging theory suggests how users ‘hunt’ for
information by analyzing the current cues, or scents, in their
environment [24].

These theories ground our analysis of what forms of information
seeking behavior appear in a digital library environment: users
come to a DL looking for research information, but their
confidence, emotional state, and comfort/familiarity with the
system affect their information seeking behavior as much as their
intellectual desire to solve their information need. One method
for gathering this information in traditional libraries was the
‘reference interview’ where the librarian and user had a
continuing discussion about the user’s information seeking task
[30]. As librarians have been replaced by search boxes, users may
have faster access to raw information, but without the support and
help they may need. By leveraging the opinions of other DL users
as well as content authors, recommenders can bring that ‘human
touch’ into digital libraries.

In particular, HRI suggests that users and recommenders have a
similar interaction with the end goal of generating meaningful
recommendations. In order to apply HRI to digital libraries, such
as the ACM Digital Library, we need an understanding of possible
user tasks in this domain. We will review a few examples here.

Find references to fit a document. This is our baseline task.
Given a document and list of references, what additional
references might be appropriate to consider and review?
Documents of interest include paper drafts, theses, grant
proposals, and book chapters, among others.

Maintain awareness in a research field. Dedicated researchers
continually need a stream of information on the events in their
research area. It is not always clear which new items are
interesting, or what older items have become relevant for various
reasons. This task includes maintaining a prioritized list of papers
to read, pushing a “paper of the week”, or triggering an alert
whenever a new paper of interest is added to the collection.

Figure 1-1: Aspects of Human-Recommender Interaction. The Aspects are divided into three 'Pillars'

172

Find people to send paper preprints and e-prints. Junior
academics, for example, often send copies of their papers to senior
colleagues for advice and support. Building these connections
help research communities grow by linking new and established
researchers together, but often new researchers do not know who
might be interested in their work.

Inform collection management at a research library. With
declining government support for universities and increasing
journal subscription costs, nearly all public university libraries in
the United States (and many private and corporate libraries across
the world) must make careful decisions about which subscriptions
to start, renew, or discontinue. Gathering the needed information
is an elaborate and expertise-intensive process, including journal
usage analysis (both in-print and electronically), journal
importance in the field, journal availability through other libraries,
journal relevance to faculty and students at the university, and the
cost of the subscription. Moreover, finding information on
journals for which the library does not have a subscription can be
very difficult.

These tasks are only suggestive of what users might want from a
digital library. Since each task has specific needs, we believe
incorporating a tuned recommender into a DL can help better
meet these tasks. The HRI Process Model suggests how we can
tune recommenders to meet user tasks; it is done through the
language of the HRI Aspects. Aspects are selected that best
describe the kinds of results users expect to see from the
recommender for this task [20]. The HRI Aspects can then be
matched to recommender algorithms to select the most
appropriate algorithm for the given task from a family of
algorithms with known recommendation properties.

For example, the initial task, “Find references to fit a document”,
implies the user is trying to ‘grow’ a list. Thus, important Aspects
could include Saliency (the emotional reaction a user has to a
recommendation), Spread (the diversity of items from across the
DL), Adaptability (how a recommender changes as a user
changes), and Risk (recommending items based on confidence).
Through these Aspects we can map this task to the appropriate
algorithms, as algorithms are mapped to aspects via a variety of
metrics [18]. One of the strengths of HRI is that it only claims the
mappings exist. While it provides suggestions for creating the
mappings automatically, we believe user input is critical to get the
mappings correct. In this paper, we add users into this feedback
loop by asking them to evaluate these mappings independently.

3. RECOMMENDING PAPERS
We focused on four recommender algorithms to cover in this
domain: three collaborative algorithms and one content-based.
We selected User-Based Collaborative Filtering (CF), a Naïve
Bayesian Classifier, a version of Probabilistic Latent Semantic
Indexing (PLSI), and a textual TF/IDF-based algorithm. We
chose these because they represent a spread of recommendation
approaches and are well known in the research community. Table
3-1 has a summary of the four algorithms.

To generate paper recommendations, a content-based algorithm
would mine the text of each paper, and correlate an input stream
of words to mined papers. The collaborative algorithms, on the
other hand, ignore paper text. Further, instead of relying on user
opinion to generate recommendations, previous work has mined
the citations between papers to populate the ratings matrix for CF
recommendations [21, 31]. In this model, each paper “votes” for

the citations on its reference list. Thus, papers are “users” and
citations are “items”—papers receive citation recommendations.
When an author puts a citation in a paper she writes, it is an
implicit vote for that citation. All of the collaborative algorithms
use this data to train models and generate recommendations.
While Byes and PLSI could be trained on many different features,
we are only considering them as collaborative algorithms and
training them with citation data.

In this collaborative model, a paper is a collection of citations; the
content is ignored. Moreover, any collection of citations can be
sent to the recommender algorithm for recommendations (a
‘pseudo-paper’, if you will). For example, we could send one
paper’s worth of citations or one author’s entire bibliography of
citations to the recommender. The interaction with the
recommender is the same in both cases, but the meaning behind
the interaction could be quite different.

Table 3-1: Summary of Recommender Algorithm Properties

 Run-time
Speed

Pre-
Process

Expected
Rec. Type

User-User
CF Slow None High

Serendipity
Naïve
Bayes Fast Slow High

Ratability

PLSI Very Fast Very Slow “Local”
Serendipity

TF/IDF Very Slow Fast High
Similarity

3.1 User-based Collaborative Filtering
User-based Collaborative filtering (CF) has been widely used in
recommender systems for over 12 years. It relies on opinions to
generate recommendations: it assumes people similar to you also
have similar opinions on items as you do, thus their opinions are
recommendations to you. The most well known algorithm is
User-based collaborative filtering (a.k.a. User-User CF, or
Resnick’s algorithm), a k-nearest neighbor recommendation
algorithm [10, 26]. To generate recommendations for a target
user, a neighborhood of k similar users is calculated, usually using
Pearson correlation, and the highest weighted-average opinions of
the neighborhood are returned as a recommendation list.

User-based collaborative filtering has many positives and
negatives. It is a well-known and studied algorithm, and it has
typically been among the most accurate predictors of user ratings.
Because of this, it can be considered the “gold standard” of
recommender algorithms. Conceptually, it is easy to understand
and easy to implement. It has a fast and efficient startup, but can
be slow during run-time, especially over sparse datasets. Choice
of neighborhood sizes and similarity metrics can affect coverage
and recommendation quality. It is felt in the community that
User-based CF can generate ‘serendipitous recommendations’
because of the mixing of users across the dataset, but the structure
of the dataset greatly affects the algorithm—it is possible that for
some users, a User-based CF algorithm will never generate high
quality recommendations.

There are many other variations of collaborative filtering,
including item-based CF [27], content-boosted CF [8, 22], CF
augmented with various machine learning optimizations [2, 4, 12],
as well as hybrid approaches [3]. In this paper, we chose User-

173

based CF for its simplicity, high quality recommendations, and
familiarity in the recommender systems community.

Based on results of previous work, we expect User-based CF to
perform very well generating research paper recommendations.
Since we are guaranteed each item in a digital library rates other
items (all papers cite other papers!), we expect good level of
‘cross-pollination’ for serendipitous recommendations as well as
high coverage. While the size of ACM Digital Library is not
overwhelmingly large, issues of scale and sparsity are relevant if
User-based CF is applied to larger databases, such as the PubMed
digital library from NIH, containing over 16 million citations [23].

3.2 Naïve Bayes Classifier
If we assume independence of co-citation events in a research
paper, then a Naïve Bayes Classifier [1] can be used to generate
citation recommendations. All co-citations pairs are positive
training examples. Posterior probabilities are the likelihood an
item is co-cited with items (citations) in the target paper class.
Items that are strongly classified as belonging to the target paper
class are returned as recommendations (usually a top-n list).

A Bayes Classifier also has many pros and cons. It is a well-
known and established algorithm in the machine learning
literature. The independence assumption between co-citation
pairs is a large one to make, but even in domains where this
assumption fails, this classifier still performs quite well [6]. The
classifier requires a model to generate recommendations, and this
model must be re-built when new data is entered—a potentially
slow process. Generating recommendations, however, is quick.

Because at heart, a Naïve Bayesian Classifier is a classification
algorithm, we have specific expectations for it. Classifiers
calculate ‘most likely events’; they determine what classes items
belong to. From a user’s point of view in a recommender, a
classifier returns the next most likely item the user will rate. This
‘ratability’ property of classifiers may not match a user’s
expectations in a recommender. As such, we believe that the
recommendations would be more “mainstream”, and not as
serendipitous as User-based CF. Finally, full coverage could
make a difference in low-data situations.

3.3 Probabilistic Latent Semantic Indexing
Probabilistic Latent Semantic Indexing (PLSI) is a relatively new
algorithm to be applied to recommender systems [11]. PLSI is a
probabilistic dimensional reduction algorithm with a strong
mathematical foundation. In PLSI, the ratings space (citation
space) is modeled using a set of independent latent classes. A
user (i.e. paper) can have probabilistic memberships in multiple
classes. PLSI uses a variant of the EM algorithm to optimize the
class conditional parameters through a variational probability
distribution for each rating (citing) instance based on previous
model parameters. Items (citations) with the highest probabilities
relative to the latent classes are recommended

Similar in spirit to the Bayes classifier, PLSI has similar benefits
and drawbacks. It is mathematically rigorous, using latent classes
to find probabilistic relationships between items. Model creation
takes a very long time, requiring exceptional computing resources,
but runtime is very efficient. It also will have 100% coverage.
The latent classes are the key feature of this algorithm, thus
performance and quality are highly dependent on the number of
latent classes used.

This is a relatively new algorithm in this domain. We believe the
latent aspect of this algorithm makes it more like User-based CF:
generating interesting and serendipitous recommendations. In
some ways, PLSI is like a ‘soft’ clustering algorithm, creating
clusters around the latent classes. By performing local
maximizations, the EM nature of the algorithm could reinforce
more “popular” connections between items at the expense of
“further reaching” (and potentially more interesting) connections,
thus recommendations could be interesting locally, finding
unexpected papers closely related to the input, but not interesting
for finding a broad set of items from across the dataset.

3.4 Content-based Filtering with TF/IDF
Content-based filtering for papers uses the full text to generate
recommendations. One of the most popular and well-used content
filtering algorithms is Porter-stemmed Term Frequency/Inverse
Document Frequency (TF/IDF) [25]. By using the frequency of
stemmed words in a document compared to the entire corpus, this
algorithm recommends items based on how well they match on
important keywords.

TF/IDF is well known in the information retrieval community,
and is considered as the standard vector-space model (a.k.a. “bag
of words”) approach to information processing. Since all papers
contain content, they can be immediately processed, and thus
recommended. This compares to the collaborative methods where
the strength of the citations can unduly influence
recommendations towards older, more cited works. Yet, “bag of
words” content analysis is limited by semantic differences (e.g.
“car” is not equated to “automobile”). It also may return many
irrelevant results, recommending papers who mention the search
terms only in passing. These issues are not as important in
scientific literature as papers in one area have a generally agreed-
upon vocabulary. Finally, TF/IDF does have an associated cost in
pre-processing time and storage space, like other model-based
algorithms.

Prior results show that when Content-based Filtering works, it
performs very well at generating highly similar results. But more
often than not, it fails to generate relevant results. This cherry-
picking behavior limits it usefulness, especially when searching
for novel or obscure work. On the other hand, this algorithm may
excel at more conservative user tasks, especially those that start
with a fair amount of information (e.g. “I know many of the
conference papers in this research area, but I don’t know about
journal papers or workshops”). In general, we expect it to
generate a narrow, yet predictable kind of recommendation list.

4. THE USER STUDY
Previous simulation experiments suggest recommender algorithms
behave differently from each other on a variety of metrics [18]. In
this study, we tackle the following research questions:

• How will real users describe the recommendations generated
by different recommender algorithms?

• How will users rate the ability of recommender algorithms to
meet the needs of specific user tasks?

4.1 Experimental Design
In the experiment, we generated two recommendation lists of five
items each, called ‘List A’ and ‘List B’. These recommendation
lists were based on a ‘basket’ of papers that the user provided to
us. Users were randomly assigned two algorithms; the display of

174

the lists was counterbalanced to cancel any possible order effects.
Algorithm recommendation lists were pre-screened to make sure
there was not strong overlap between result lists. At most, lists
had 2 out of 5 recommendations in common. Since order is
important in the returned results, if there was overlap, the list that
has the shared result ‘higher up on the list’ retained the item. In
the rare event of a tie, List A always won.

Our dataset is based on a snapshot of the ACM Digital Library,
containing over 24,000 papers. For each paper, we have text of
the paper’s abstract; each paper cites at least two other papers in
the dataset and is cited by at least two other papers in the dataset.

Users were recruited from several different pools. A subject
either had to be an author of papers appearing in the dataset or be
“very familiar” with the literature in a particular research area.
Users were mined from the DL itself: a random selection of users
who authored more than five papers in the dataset were sent an
email invitation to participate. We also sent invitations to several
computer science mailing lists asking for participants.

As a summary, the following algorithms were used in the online
experiment:

1. User-based collaborative filtering at 50 neighbors, we used
the SUGGEST Recommender as our implementation [14]

2. Porter-stemmed TF/IDF content-based filtering over paper
titles, authors, keywords, and abstracts; we used the Bow
Toolkit as our implementation [17]

3. Naïve Bayes Classifier trained using co-citation between
papers as its feature; we used a custom implementation

4. Probabilistic Latent Semantic Indexing with 1000 classes; we
used a unary co-occurrence latent semantic model and
tempered our EM algorithm to avoid overfitting

4.2 Experiment Walkthrough
After consenting, subjects were asked as to their status as a
researcher/academic (novice, expert, or outside the field of
computer science) and as to their familiarity with the ACM
Digital Library. Next, subjects were asked to create their ‘basket’,
a list of papers to be sent to the recommender engines. This list is
seeded by the name of an author who has published in the ACM
Digital Library. There were options for selecting ‘yourself’ as an
author or selecting ‘someone else’. Figure 4-1 shows the author
selection page.

After confirming the author selection, the subject was presented
with a list of papers by that author in our dataset. The subject was
allowed to prune any papers he did not want in the basket. If the
subject stated he was an author himself, he saw a listing of papers
he had written as well as a listing of papers he had cited from our
dataset. If the subject selected another author, he was only
presented with the listing of papers that author had published in
our dataset. This decision had great implications on our results, as
we will discuss later.

After pruning was finished, we presented the user with a selection
of two possible information-seeking tasks, see Table 4-1. After
selecting a task, the subject received two recommendation lists.
See Figure 4-2 and Figure 4-3 for an overview of the paper
selection and recommendation interfaces. There were two pages
of questions associated with the recommendation lists. On the
first page, we asked comparative questions: user opinion about the

kinds of papers appearing on the lists. On the second page, we
asked task-related questions: rating the suitability of each list to
meet the subject’s chosen information seeking task.

Figure 4-1: The Author Selection Page

Figure 4-2: The Paper and Citation Selection Page

Figure 4-3: The Recommendation List Screen

175

Table 4-1: Available Information Seeking Tasks

Group Available Tasks

My bibliography is a list of papers that are important to my
research. Locate papers that I might want to cite in the future
(or perhaps that should have cited me!). These other papers
would be related to my work and would help me in my current
research efforts. Author, with my

own work Given my bibliography as a description of what I find
interesting in research, locate papers I would find interesting to
read. These papers would not necessarily be work in my area,
and could suggest potential collaborators or new research
questions to explore in the future.

You would like to build a list of papers to describe a research
area, and you started with this input basket. You are
concerned about covering the area and want to make sure you
no not miss any important papers. Which papers would next
appear on this list?

Someone else’s
publications You are looking to expand your research interests into new or

related areas, hoping to find interesting papers to read. Your
input basket represents some papers in your current research
area and interests. What papers might expand your
knowledge, find new collaborators, or suggest new research
areas to explore in the future?

Table 4-2: Survey Questions for Both Pages

Page 1: Comparative Questions

1-1 I would consider most of the papers on this recommendation list as
authoritative works in their field.

1-2 Most of the papers on this recommendation list are papers that that I have
previous read, I am familiar with, or I have heard of.

1-3 This recommendation list is closely tuned-tailored-personalized to my given
input basket, and is not a generic list of papers in this research area.

1-4 This list feels like a good recommendation list. I like it. It resonates with me.

1-5 This recommendation list contains papers that I was not expecting to see, but
are good recommendations considering my input basket.

1-6 This list contains a good spread of papers from this research area and is not
overly specialized, given the input basket.

Page 2: Task-related Questions

2-1 In your opinion, which recommendation list generated a better set of
recommendations for you and your task?

2-2 How satisfied are you with the recommendations in the list you preferred?

2-3
Pretend you were going to perform the alternate task, the one you did not
choose (see above). In your opinion, which recommendation list generated a
better set of recommendations for this other task?

2-4
We have the ability to send you a text file containing the standard ACM citation
format for these recommendation lists. Would you like to keep a copy of these
recommendation lists?

2-5 If so, which format would you prefer?

Note: For referencing, questions may be referred by number or by the bolded text in the
question. No words were bold in the online survey.

Table 4-3: Number of Users per Experimental Condition

Algorithm Pair Users
User-User CF and TF/IDF 24

User-User CF and Naïve Bayesian 28
User-User CF and PLSI 25

TF/IDF and Naïve Bayesian 24
TF/IDF and PLSI 18

Naïve Bayesian and PLSI 23

A summary of all questions is in Table 4-2. On the first page,
there were five possible responses to each question: ‘Strongly
Agree’, ‘Agree’, ‘Disagree’, ‘Strongly Disagree’, and ‘Not Sure’.
Question 2-1, asking which list was better for the chosen task, had
two options: ‘List A’ and ‘List B’. We forced users to choose
between the lists. In Question 2-2, we ask for the user’s
satisfaction with that selection, and responses ranged from ‘Very
Satisfied’ to ‘Very Dissatisfied’, with a ‘Not Sure’ option.
Question 2-3 was a hypothetical question, asking users to ponder
the better list for the alternate task, and it had ‘List A’, ‘List B’,
and ‘Not Sure’ as its possible responses. Note that for the
hypothetical question we allowed a ‘Not Sure’ response. In
Question 2-4, we offered users an option to receive a copy of the
citations we generated for them, asking which citations they
would prefer: ‘List A Only’, ‘List B Only’, ‘Both Lists’, or
‘Neither List’. Finally, in question 2-5, we asked them which
format they would prefer: ‘the ACM DL BibTex Format’ or the
‘Standard ACM Citation Format’. While at first glance,
Questions 2-4 and 2-5 appear to be a thank-you service for users
participating in our study, we wanted to study the difference
between stating they are satisfied with a recommendation list, and
choosing to receive a copy of the list for future use—the
difference between action and words. We believe action is a
much stronger statement of satisfaction.

4.3 Results
138 subjects completed the survey over the 3-week experimental
period. There were 18 students, 117 professors/researchers, and 7
non-computer scientists. All but six subjects were familiar with
the ACM Digital Library, 104 used it on a regular basis. Each
subject was assigned to two algorithms, see Table 4-3. We will
first present overall survey results followed by algorithm-pair
interactions and conclude with results by user selected task.

4.3.1 Survey Results: Comparative Questions
Figure 4-4 and Figure 4-5 summarize the results for the six
questions on the first page. Answers have been binned into three
categories: ‘Agree’, ‘Disagree’, and ‘Not Sure’. As the figures
show, there is a dramatic difference in user opinion about the four
algorithms. Users tended to like (‘agree’ with) User CF and
TF/IDF, where as users tended to dislike (‘disagree’ with) Bayes
and PLSI. Results between these pairs are exceptionally
significant (p << 0.01). We have found a pitfall; we discuss these
unusual results in a separate in-depth analysis.

Focusing on User CF and TF/IDF, differences are statistically
significant for Question 1-2 (p < 0.01) and almost so for Question
1-1 (p = 0.11). That is, User CF is more authoritative and
generates more familiar results than TF/IDF. The trends on the
other four questions also suggest that User CF generates
recommendations that are more ‘interesting’.

4.3.2 Survey Results: Task-Related Questions
There were two kinds of information-seeking tasks: “Find closely
related papers”, and “find more distant paper relationships”.
Users were required to select one of these tasks before receiving
recommendations. Figure 4-6 shows how users judged the
suitability of each of the four algorithms to their chosen task.
Please note: users were forced to answer Question 2-1; there was
no ‘Not Sure’ option. Continuing the above trend, users chose
User CF and TF/IDF over Bayes and PLSI at about a 3:1 ratio (p
< 0.01). Question 2-2 asked users about how satisfied they were
with the algorithm they chose. Users were not pleased with Bayes

176

or PLSI (all results for Bayes were ‘Disagree’!), and were happy
(‘agree’) with User CF and TF/IDF just over half of the time.

Question 2-3 asked which algorithm would be best for the task the
user did not select. When asked about this alternate task, 56%
chose the same algorithm, 16% chose the other algorithm, and
28% were not sure. This trend carried across all four algorithms,
except for Bayes, where ‘Not Sure’ was selected 50% of the time.

The final questions asked users if they wanted to keep a copy of
the recommendations. While offered as a service, it provides an
insight into user satisfaction. 32% of all users elected to ‘keep a
copy’. 67% of satisfied users chose to while only one user who
was ‘dissatisfied’ chose to. Finally, users chose to keep
recommendations generated from User CF and TF/IDF over
Bayes and PLSI again at a 3:1 ratio (p < 0.01).

4.3.3 Results across Algorithm Pairs
Users answered questions in the context of a pair of algorithms.
The comparative questions showed minor levels of interaction.
When either User CF or TF/IDF was paired with Bayes or PLSI,
users tended to score algorithms towards the extremes, most
notably for questions 1-2 (“familiarity”), 1-3 (“personalized”),
and 1-4 (“good recommendation list”). There were no discernable
effects when User CF was paired with TF/IDF or when Bayes was
paired with PLSI.

When answering task-related questions, User CF and TF/IDF
dominated over Bayes and PLSI. When shown together, User CF
was selected 90% of the time over Bayes and 95% over PLSI.
TF/IDF was selected 88% and 94%, respectively. Compared
against each other, User CF was selected more frequently (60%)
than TF/IDF. Bayes and PLSI were preferred an equal number of
times when placed together. More interestingly, when paired
against Bayes and PLSI, User CF received higher praise, earning
all of its ‘Very Satisfied’ scores in these cases. TF/IDF saw no
such increase.

When asked for algorithm preferences for the alternate task, users
rarely switched algorithms. Of the switches between algorithms,
users switched to PLSI 9% of the time, and switched to Bayes
20% of the time. Users who first chose PLSI or Bayes always
switched to either User CF or TF/IDF. Between User CF and
TF/IDF, users were twice as likely to switch from User CF to
TF/IDF as vice-versa.

4.3.4 Results by User-selected Task
There was a 60%-40% split between subjects selecting the
“closely related papers” task or the “distant relationships” task.
Responses showed some significant differences across tasks for
different algorithms. For example, User-CF was more
authoritative for the “close” task (p < 0.05), whereas TFIDF was
more familiar for the “distant” task (p < 0.005). Further, PLSI
was more personalized for “narrow” (p < 0.01), and both User-CF
and PLSI were more unexpected for “distant” (p < 0.05 and p <
0.075, respectively).
Task selection was a 2x2 grid, where subjects also chose “Self”
vs. “Someone else”. 85% of subjects selected “Self”. The above
results are also significant for “Self”-only subjects. Trends in the
“Someone else”-only subjects also support the results above.

Comparative Results, First Three Questions

0

20

40

60

80

100

Ba
ye

s

PL
SI

TF
ID

F

Us
er

Ba
ye

s

PL
SI

TF
ID

F

Us
er

Ba
ye

s

PL
SI

TF
ID

F

Us
er

Pe
rc

en
ta

ge

Agree Unsure Disagree

Figure 4-4: Displayed from Left to Right, Results for the
Comparative Questions on ‘Authoritative Works’,
‘Familiarity’, and ‘Personalization’

Comparative Results, Second Three Questions

0

20

40

60

80

100

Ba
ye

s

PL
SI

TF
ID

F

U
se

r

Ba
ye

s

PL
SI

TF
ID

F

U
se

r

Ba
ye

s

PL
SI

TF
ID

F

U
se

r

Pe
rc

en
ta

ge

Agree Unsure Disagree

Figure 4-5: Displayed from Left to Right, Results for the
Comparative Questions ‘Is a Good Recommendation’, ‘Not
Expecting’, and ‘Good Spread’

Suitability of Algorithms for Chosen Task

0

10

20

30

40

50

60

Bayes PLSI TFIDF User

Us

er
s

Disagree
Unsure
Agree

Figure 4-6: Results for Questions 2-1 and 2-2, User Opinion
on Suitability of Algorithms for the Chosen User Task

177

Table 4-4: Overlap for Top 10 Recommendation Lists by
Basket Size. Computed as the average of the intersection /
union for all possible pairs in basket range. The lower the
score, the fewer shared items. 0 means no overlap

 < 5 5 - 15 15 - 30 30+
Bayes 0.22 0.36 0.20 0.04
PLSI 0.01 0.01 0.002 0.004
TF/IDF 0.002 0 0 0.03
User 0 0 0.001 0.04

4.4 Analysis and Discussion
Before discussing the results of this study, we first perform a
closer analysis of the atypical results we found and review our
results for any potential order bias.

4.4.1 Analysis of Atypical Results
The Bayes and PLSI algorithms did not perform as expected.
Prior work suggests that a Naïve Bayesian Classifier should be
similar to User-based CF in this domain [21], and PLSI has shown
to be of high quality in other domains [11]. What happened?
A careful review of our logs reveals that Bayes was generating
similar recommendation lists for all users. Looking at top-10
recommendations lists, on average 20% of the recommended
papers were identical for all users. Instead of returning
personalized recommendations, Bayes returned the most highly
co-cited items in the dataset. Changing the input basket size was
did not have an effect: see Table 4-4. Trend data suggests as
overlap increased, user satisfaction decreased across all questions,
most notably for ‘personalization’ and ‘good spread’, but also for
task usage as well.
PLSI was doing something equally as odd. While it returned
personalized recommendations, a random sampling from logs
revealed seemingly nonsensical recommendations. For example,
an input basket composed of CHI papers received
recommendations for operating system queuing analysis. We
were unable to determine any patterns in the PLSI behavior.
In this work, the input basket size varied greatly (average of 26
items, stddev 32.6), with many baskets containing five or fewer
items. Much as search engines need to return relevant results with
little input [29], recommenders in this domain need to adapt to a
variety of user models. User CF and TF/IDF we able to do so,
Bayes and PLSI were not.

Yet, it is not accurate to say the algorithms ‘failed’—some users
did receive high quality recommendations. Rather, Bayes and
PLSI were inconsistent. While Bayes averaged an overlap score
of 0.20, the standard deviation was 0.26. We believe the quality
of the recommendations generated by these two algorithms
depended on how well-connected items in the input basket were to
the rest of the dataset, especially for Bayes. For example, in our
tests, adding one well-cited item to a questionable Bayesian
basket radically improved the results. Adding such items to PLSI
was not always as helpful. In PLSI, we believe many of the latent
classes were ‘junk classes’, thus to improve recommendations,
items from good classes need to be in the input basket.

4.4.2 Order Bias
The experiment was cross-balanced, so each algorithm appeared
an equal number of times as List A and List B. With this balance,
we were able to detect an order bias, where people preferred List

A (on the left) to List B (on the right). Specifically, equal
numbers of people selected List A and List B as their preferred list
(Question 2-1). But those who chose List B were less satisfied
with their selection (Question 2-2) (p < 0.10).

4.4.3 Comparative and User Task Analysis
The atypical results of the two recommender algorithms have
skewed the results of the survey, making a detailed comparative
analysis difficult. For User CF and TF/IDF, users recognized the
recommendations and deemed them authoritative in their research
area, but the lists did not contain unexpected results, and users
were not sure if the recommendations contained came from a wide
spread of the dataset. The differences between User CF and all
other algorithms for authority and familiarity were significant.
These results are different from previously published work where
User CF generated more unexpected recommendations than
TF/IDF. We do reinforce the result that User CF generates
authoritative paper recommendations. Further, previous work
suggested that TF/IDF had a higher level of user satisfaction,
whereas here, both algorithms received positive scores. Of
course, the interaction effects may have influenced user responses,
especially for User CF.
TF/IDF showed to be equally as useful for all four given user
tasks with around a 54% satisfaction rating for all tasks. User CF
showed a higher satisfaction rating (60%) for the ‘find closely
related papers’ task. These results also reinforce previous
findings, but only in context of the possible interaction effects.
Finally, we showed user opinion of algorithms varied by task.
That is, depending on the current task, users perceived differences
among algorithms across multiple dimensions. This is the first
experimental evidence in support of HRI, suggesting that the
qualities of algorithms important to users vary according to task.

4.4.4 Dataset Limitations
While our dataset was of high quality, it contained several
limitations. The two striking ones are the scope of the data and
range of the data. Only items for which the ACM holds copyright
were contained in this dataset, many relevant papers were not
included. Due to the nature of the DL, the bulk of items were
published in the last 15 years. Finally, items had to cite other
items and be cited by other items in the dataset. This limitation
excluded much of the newest published work. We received
several emails from users complaining about these limitations,
including requests to add their work to our dataset, statements that
they have changed research fields, and concerns for only receiving
recommendations for older papers.
Further, these limitations may have affected PLSI’s and the Naïve
Bayesian Classifier’s performance. While all papers were
connected to each other, many were only weakly so. Both of
these algorithms use strong statistical models as a basis for their
recommendations. When calculated over a dataset such as this
one, the meaningful statistics could be ‘washed out’ by the other
calculations. In Bayes, a paper with a strong prior probability
could influence posterior probabilities, or perhaps the naïve
assumption was one we should not make in this domain. In PLSI,
the local maximization calculations could reinforce stronger
global calculations in place of the weaker, yet meaningful local
connections. Finally, is worth asking the question if measuring
co-citations is the correct mapping for recommenders in this
domain. A complete analysis and discussion, however, is outside
the scope of this paper.

178

5. IMPLICATIONS AND FUTURE WORK
As previously mentioned, Bayes and PLSI perform well as
recommenders in offline simulation experiments. Specifically,
both have scored well on accuracy metrics in using a leave-n-out
methodology [1, 11]. As we have argued elsewhere (i.e. [19, 20])
such offline measures may not translate into useful measures for
end users.

In particular, Bayes recommended users a combination of
personalized and non-personalized recommendations. In many
cases, the personalized recommendations were good suggestions.
In fact, in offline leave-n-out scenarios, it did not matter that the
recommendation lists contained a mixture of highly personalized
and non-personalized items, as long as the withheld item appeared
on the list, the algorithm scored well on the metric [20]. Users,
however, were not satisfied with these recommendation lists.
These results suggest that the research community’s dependence
on offline experiments have created a disconnect between
algorithms that score well on accuracy metrics and algorithms that
users will find useful.

This argument is even more subtle. In our testing of HRI, we
performed an offline analysis of recommendation lists using a
series of non-accuracy-based metrics. If the Naïve Bayes
Classifier were generating a mixture of personalized and non-
personalized results, a personalization metric should have
revealed this problem. In our results, Bayes generated very
personalized responses [20]. The difference between then and
now is the input baskets. The baskets then were based on the
citations from a single paper; usually such lists contain a mixture
of well and loosely connected papers, lists for which Bayes could
generate personalized recommendations. The input baskets here
were different—they were based on papers written by a single
author. This reveals not just the importance of the dataset but also
the importance of the input basket when analyzing algorithms.
The disconnect is even larger than we thought.

In previous work, we argued that showing one good
recommendation in a list of five was enough to satisfy users. It is
not that simple: showing one horrible recommendation in five is
enough for users to lose confidence in the recommender. We call
this the Don’t Look Stupid principle: only show recommendation
lists to users when you have some confidence in their usefulness.
While this principle applies most dramatically when talking about
Bayes and PLSI in our results, we believe it is just as important
when dealing with users’ information seeking tasks. A
recommendation list is bad when it is not useful to the user,
independent of why it is bad.

To understand this principle in context, we can use HRI. This
experiment was one-time online user survey. These users had no
previous experience with the recommender algorithms, and they
were given an information seeking task. Because of this, many
HRI Aspects are not relevant to our discussion, but a few become
very important, such as: Correctness, Saliency, Trust, and
Expectations of Usefulness. By being asked to be in an
experiment, users had a heightened awareness of the
recommendation algorithms; they expected the algorithms to be
useful and they expected them to generate correct results. Indeed,
we received several emails from users worried about the poor
recommendations they received from either Bayes or PLSI. We
had no time to build trust with our users, nor did the users gain a
sense of the algorithms’ personality. When users received

nonsensical results, we believe they had a strong emotional
reaction. The results went against their expectations of being an
experiment to receive personalized recommendations. Thus, the
users provided the strong negative feedback.

There many threads of possible future work. First, we need a
deeper understanding of Bayes and PLSI in this domain. How
much of the difficulties experienced in this work are related to
properties of the algorithms, properties of the dataset and input
baskets, or implications of how these algorithms were applied in
this domain? Second, while this study provides evidence to the
tenet of HRI that specific recommender algorithms are better
suited to certain information needs, more work needs to be done.
Yet it does raise one interested question from our HRI analysis,
could a recommender be ‘stupid’ in front a user with whom the
recommender has already built a relationship? This work must be
done with real users; offline analysis is not enough. Finally, the
performance of Bayes and PLSI in this domain suggest that
dataset properties and input basket selection greatly influence
recommendation lists, implying the need for a study comparing
multiple datasets across multiple algorithms.

6. CONCLUSIONS
Recommending research papers in a digital library environment
can help researchers become more productive. Human-
Recommender Interaction argues that recommenders need to be
approached from a user-centric perspective in order to remain
relevant, useful, and effective in both this and other domains.
HRI suggests tailoring a recommender to a user’s information
need is a way to this end. To test these ideas, we ran a study of
138 users using four recommender algorithms over the ACM
Digital Library. Instead of validating our research questions, we
ran into a large pitfall and discovered a more telling result: Don’t
Look Stupid. Recommenders that generate nonsensical results
were not liked by users, even when the nonsensical
recommendations were intermixed with meaningful results.
These results suggest that it is critically important to select the
correct recommender algorithm for the domain and users’
information seeking tasks. Further, the evaluation must be done
with real users, as current accuracy metrics cannot detect these
problems.

7. ACKNOWLEDGMENTS
We would like to thank the ACM for providing us with a snapshot
of the ACM Digital Library. Thanks to GroupLens Research and
the University of Minnesota Libraries for their help and support,
especially Shilad Sen for helping with PLSI. This research is
funded by a grant from the University of Minnesota Libraries and
by the National Science Foundation, grants DGE 95-54517, IIS
96-13960, IIS 97-34442, IIS 99-78717, and IIS 01-02229.

8. REFERENCES
[1] J.S. Breese, D. Heckerman and C. Kadie, "Empirical

Analysis of Predictive Algorithms for Collaborative
Filtering", in Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, pp. 43-52, 1998.

[2] J. Browning and D.J. Miller, "A Maximum Entropy
Approach for Collaborative Filtering", J.VLSI Signal
Process.Syst., vol. 37(2-3), pp. 199-209, 2004.

[3] R. Burke, "Hybrid Recommender Systems: Survey and
Experiments", User Modeling and User-Adapted Interaction,
vol. 12(4), pp. 331-370, 2002.

179

[4] J. Canny, "Collaborative Filtering with Privacy Via Factor
Analysis", in Proc. of the 25th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pp. 238-245, 2002.

[5] D.O. Case, Looking for Information: A Survey of Research
on Information Seeking, Needs, and Behavior, San Diego:
Academic Press, 2002, pp. 350.

[6] P. Domingos and M. Pazzani, "Beyond Independence:
Conditions for the Optimality of the Simple Bayesian
Classifier", in Proc. of the 13th International Conference on
Machine Learning (ICML 96), pp. 105-112, 1996.

[7] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins,
"Eigentaste: A Constant Time Collaborative Filtering
Algorithm", Inf.Retr., vol. 4(2), pp. 133-151, 2001.

[8] N. Good, J.B. Schafer, J.A. Konstan, A. Borchers, B. Sarwar,
J. Herlocker and J. Riedl, "Combining Collaborative
Filtering with Personal Agents for Better
Recommendations", in Proc. of the Sixteenth National
Conference on Artificial Intelligence, pp. 439-446, 1999.

[9] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J.T. Riedl,
"Evaluating Collaborative Filtering Recommender Systems",
ACM Trans.Inf.Syst., vol. 22(1), pp. 5-53, 2004.

[10] J.L. Herlocker, J.A. Konstan, A. Borchers and J. Riedl, "An
Algorithmic Framework for Performing Collaborative
Filtering", in Proc. of the 22nd Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pp. 230-237, 1999.

[11] T. Hofmann, "Latent Semantic Models for Collaborative
Filtering", ACM Trans.Inf.Syst., vol. 22(1), pp. 89-115, 2004.

[12] Z. Huang, H. Chen, and D. Zeng, "Applying Associative
Retrieval Techniques to Alleviate the Sparsity Problem in
Collaborative Filtering", ACM Trans.Inf.Syst., vol. 22(1), pp.
116-142, 2004.

[13] I. Im and A. Hars, "Finding Information just for You:
Knowledge Reuse using Collaborative Filtering Systems", in
Proc. of the Twenty-Second International Conference on
Information Systems, pp. 349-360, 2001.

[14] G. Karypis, "SUGGEST Top-N Recommendation Engine",
http://www-users.cs.umn.edu/~karypis/suggest/, 2000.

[15] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R.
Gordon, and J. Riedl, "GroupLens: Applying Collaborative
Filtering to Usenet News", Commun ACM, vol. 40(3), pp.
77-87, 1997.

[16] C.C. Kuhlthau, Seeking Meaning: A Process Approach to
Library and Information Services, Westport, CT: Libraries
Unlimited, 2004, pp. 247.

[17] A.K. McCallum, "Bow: A Toolkit for Statistical Language
Modeling, Text Retrieval, Classification and Clustering",
http://www-2.cs.cmu.edu/mccallum/bow/, 1996.

[18] S.M. McNee. Meeting User Information Needs in
Recommender Systems. Ph.D. Dissertation, University of
Minnesota. 2006.

[19] S.M. McNee, J. Riedl and J.A. Konstan, "Being Accurate is
Not enough: How Accuracy Metrics have Hurt
Recommender Systems", in Ext. Abs. of the 2006 ACM
Conference on Human Factors in Computing Systems, pp.
997-1001, 2006.

[20] S.M. McNee, J. Riedl and J.A. Konstan, "Making
Recommendations Better: An Analytic Model for Human-
Recommender Interaction", in Ext. Abs. of the 2006 ACM
Conference on Human Factors in Computing Systems, pp.
1003-1008, 2006.

[21] S.M. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, S.K.
Lam, A.M. Rashid, J.A. Konstan and J. Riedl, "On the
Recommending of Citations for Research Papers", in Proc.
of the 2002 ACM Conference on Computer Supported
Cooperative Work, pp. 116-125, 2002.

[22] P. Melville, R.J. Mooney and R. Nagarajan, "Content-
Boosted Collaborative Filtering for Improved
Recommendations", in Proc. of the Eighteenth National
Conference on Artificial Intelligence, pp. 187-192, 2002.

[23] National Institutes of Health (NIH), "Entrez PubMed",
http://www.ncbi.nlm.nih.gov/entrez/, 2006.

[24] P. Pirolli, "Computational Models of Information Scent-
Following in a very Large Browsable Text Collection", in
CHI '97: Proc. of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 3-10, 1997.

[25] M.F. Porter, "An algorithm for suffix stripping," in Readings
in Information Retrieval, K.S. Jones and P. Willett eds., San
Francisco, CA: Morgan Kaufmann Publishers Inc, 1997, ch.
6, pp. 313-316.

[26] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J.
Riedl, "GroupLens: An Open Architecture for Collaborative
Filtering of Netnews", in Proc. of the 1994 ACM Conf. on
Computer Supported Cooperative Work, pp. 175-186, 1994.

[27] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-Based
Collaborative Filtering Recommendation Algorithms", in
Proc. of the Tenth International Conference on the World
Wide Web, pp. 285-295, 2001.

[28] U. Shardanand and P. Maes, "Social Information Filtering:
Algorithms for Automating "Word of Mouth"", in Proc. of
the SIGCHI Conference on Human Factors in Computing
Systems, pp. 210-217, 1995.

[29] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz,
"Analysis of a very Large Web Search Engine Query Log",
SIGIR Forum, vol. 33(1), pp. 6-12, 1999.

[30] R.S. Taylor, "Question-Negotiation and Information Seeking
in Libraries", College and Research Libraries, vol. 29pp.
178-194, May, 1968.

 [31] R. Torres, S.M. McNee, M. Abel, J.A. Konstan and J. Riedl,
"Enhancing Digital Libraries with TechLens+", in Proc. of
the 2004 Joint ACM/IEEE Conference on Digital Libraries,
pp. 228- 236, 2004.

180

