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ABSTRACT 
If recommenders are to help people be more productive, they need 
to support a wide variety of real-world information seeking tasks, 
such as those found when seeking research papers in a digital 
library.  There are many potential pitfalls, including not knowing 
what tasks to support, generating recommendations for the wrong 
task, or even failing to generate any meaningful recommendations 
whatsoever.  We posit that different recommender algorithms are 
better suited to certain information seeking tasks.  In this work, 
we perform a detailed user study with over 130 users to 
understand these differences between recommender algorithms 
through an online survey of paper recommendations from the 
ACM Digital Library.  We found that pitfalls are hard to avoid.  
Two of our algorithms generated ‘atypical’ recommendations—
recommendations that were unrelated to their input baskets.  Users 
reacted accordingly, providing strong negative results for these 
algorithms.  Results from our ‘typical’ algorithms show some 
qualitative differences, but since users were exposed to two 
algorithms, the results may be biased.  We present a wide variety 
of results, teasing out differences between algorithms.  Finally, we 
succinctly summarize our most striking results as “Don’t Look 
Stupid” in front of users. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – information filtering, relevance feedback, 
retrieval models 

General Terms 
Algorithms, Experimentation, Human Factors 

Keywords 
Personalization, Recommender Systems, Human-Recommender 
Interaction, Collaborative Filtering, Content-based Filtering, 
Information Seeking, Digital Libraries 

 

 

1. INTRODUCTION 
Recommender systems are supposed to help users navigate 
through complex information spaces by suggesting which items a 
user should avoid and which items a user should consume.  They 
have proven to be successful in many domains, including Usenet 
netnews [15], movies [10], music [28], and jokes [7], among 
others.  Even more, recommenders have transitioned from a 
research curiosity into products and services used everyday, 
including Amazon.com, Yahoo! Music, TiVo, and even Apple’s 
iTunes Music Store. 

Yet, with this growing usage, there is a feeling that recommenders 
are not living up to their initial promise.  Recommenders have 
mostly been applied to lower-density information spaces—spaces 
where users are not required to make an intensive effort to 
understand and process recommended information (i.e. such as 
movies, music, and jokes) [13].  Moreover, recommenders have 
supported a limited number of tasks (i.e. a movie recommender 
can only help find a movie to watch).  Can recommenders help 
people be productive, or only help people make e-commerce 
purchasing decisions?  Herlocker et al. stated it best when they 
said, “There is an emerging understanding that good 
recommendation accuracy alone does not give users of 
recommender systems an effective and satisfying experience.  
Recommender systems must provide not just accuracy, but also 
usefulness.” [9] (Emphasis in original)  

But what is usefulness?  We believe a useful recommendation is 
one that meets a user’s current, specific need.  It is not a binary 
measure, but rather a concept for determining how people use a 
recommender, what they use one for, and why they are using one.  
Current systems, such as e-commerce websites, have predefined a 
user’s need into their business agendas—they decide if a system is 
useful for a user!  Users have their own opinions about the 
recommendations they receive, and we believe if recommenders 
should make personalized recommendations, they should listen to 
users’ personalized opinions. 

There are many recommender pitfalls.  These include not building 
user confidence (trust failure), not generating any 
recommendations (knowledge failure), generating incorrect 
recommendations (personalization failure), and generating 
recommendations to meet the wrong need (context failure), 
among others.  Avoiding these pitfalls is difficult yet critical for 
the continued growth and acceptance of recommenders as 
knowledge management tools. 

This concern is of even greater importance as recommenders 
move into denser information spaces—spaces where users face 
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serious challenges and the cost of failure is high.  One such space 
is that of researchers seeking peer-reviewed, published work from 
a digital library.  In previous work, we generated 
recommendations for computer science research papers [21].  In 
that paper and in follow-up work, we found that not only could 
recommenders generate high quality recommendations in this 
domain, but also users felt that various recommender algorithms 
generated qualitatively different, yet meaningful, recommendation 
lists [21, 31].  Even though this work was in a denser information 
space of a digital library, it only supported one task: find more 
citations for a given paper. 

To make recommenders more useful, we believe they must 
support multiple information-seeking tasks.  To test this, we build 
on previous results.  We hypothesize that the differences between 
algorithms are quantifiable and predictable, and these differences 
are meaningful and valuable for end users.  That is, some 
algorithms are better suited for particular user information-
seeking tasks.  We believe that matching users, and their specific 
tasks, to the appropriate algorithm will increase use satisfaction, 
efficiency, and the usefulness of the recommender system. 

We will use Human-Recommender Interaction theory as our 
grounding to test these hypotheses.  Human-Recommender 
Interaction (HRI) is a framework and process model for 
understanding recommender algorithms, users, and information 
seeking tasks [18-20].  It takes a user-centric view of the 
recommendation process, shifting the focus of attention from the 
system and associated algorithms to the (possibly repeated) 
interactions users have with such systems.  By describing 
recommendation lists using descriptive keywords (called 
Aspects), HRI provides a language to articulate the kinds of items 
that would best meet a user’s information seeking task.  For 
example, an experienced user may want a high level of Boldness 
and Saliency from a recommender, where as a novice may want 
more Transparent and Affirming recommendations.  See Figure 
1-1 for an overview of HRI Aspects. 

In this paper, we report on a user study of over 130 users on 
research paper recommendations we generated from the ACM 
Digital Library using several different recommender algorithms.  
We asked users about the suitability of these algorithms for 
different information seeking tasks, as well as for their opinions 
on the recommendation lists across multiple dimensions, 
dimensions based on HRI. 

2. DIGITAL LIBRARIES, INFORMATION 
SEEKING TASKS, AND RECOMMENDERS 
A main tenet of HRI is that recommenders need to tailor 
recommendation lists not just to a user, but to a user’s information 
seeking task.  To understand this, we will review information 

seeking theory, present example tasks in a DL environment, 
reflect on how recommenders change digital libraries, and finally 
explain how to apply HRI in this domain. 

Information seeking theory provides us with a framework to 
understand user information needs and context.  Models of 
information seeking behavior, including Taylor’s Four Stages of 
Information Need, Wilson’s Mechanisms and Motivations model, 
Dervin’s theory of Sense Making, and Kuhlthau’s Information 
Search Process [5, 16], reveal the ways in which emotion, 
uncertainty, and compromise affect the quality and nature of a 
user's information search and its results.  More recently, 
Information Foraging theory suggests how users ‘hunt’ for 
information by analyzing the current cues, or scents, in their 
environment [24]. 

These theories ground our analysis of what forms of information 
seeking behavior appear in a digital library environment:  users 
come to a DL looking for research information, but their 
confidence, emotional state, and comfort/familiarity with the 
system affect their information seeking behavior as much as their 
intellectual desire to solve their information need.  One method 
for gathering this information in traditional libraries was the 
‘reference interview’ where the librarian and user had a 
continuing discussion about the user’s information seeking task 
[30].  As librarians have been replaced by search boxes, users may 
have faster access to raw information, but without the support and 
help they may need.  By leveraging the opinions of other DL users 
as well as content authors, recommenders can bring that ‘human 
touch’ into digital libraries. 

In particular, HRI suggests that users and recommenders have a 
similar interaction with the end goal of generating meaningful 
recommendations.  In order to apply HRI to digital libraries, such 
as the ACM Digital Library, we need an understanding of possible 
user tasks in this domain.  We will review a few examples here. 

Find references to fit a document.  This is our baseline task.  
Given a document and list of references, what additional 
references might be appropriate to consider and review?  
Documents of interest include paper drafts, theses, grant 
proposals, and book chapters, among others. 

Maintain awareness in a research field.  Dedicated researchers 
continually need a stream of information on the events in their 
research area.  It is not always clear which new items are 
interesting, or what older items have become relevant for various 
reasons.  This task includes maintaining a prioritized list of papers 
to read, pushing a “paper of the week”, or triggering an alert 
whenever a new paper of interest is added to the collection. 

Figure 1-1: Aspects of Human-Recommender Interaction.  The Aspects are divided into three 'Pillars' 
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Find people to send paper preprints and e-prints.  Junior 
academics, for example, often send copies of their papers to senior 
colleagues for advice and support.  Building these connections 
help research communities grow by linking new and established 
researchers together, but often new researchers do not know who 
might be interested in their work.   

Inform collection management at a research library.  With 
declining government support for universities and increasing 
journal subscription costs, nearly all public university libraries in 
the United States (and many private and corporate libraries across 
the world) must make careful decisions about which subscriptions 
to start, renew, or discontinue.  Gathering the needed information 
is an elaborate and expertise-intensive process, including journal 
usage analysis (both in-print and electronically), journal 
importance in the field, journal availability through other libraries, 
journal relevance to faculty and students at the university, and the 
cost of the subscription.  Moreover, finding information on 
journals for which the library does not have a subscription can be 
very difficult.   

These tasks are only suggestive of what users might want from a 
digital library.  Since each task has specific needs, we believe 
incorporating a tuned recommender into a DL can help better 
meet these tasks.  The HRI Process Model suggests how we can 
tune recommenders to meet user tasks; it is done through the 
language of the HRI Aspects.  Aspects are selected that best 
describe the kinds of results users expect to see from the 
recommender for this task [20].  The HRI Aspects can then be 
matched to recommender algorithms to select the most 
appropriate algorithm for the given task from a family of 
algorithms with known recommendation properties.  

For example, the initial task, “Find references to fit a document”, 
implies the user is trying to ‘grow’ a list.  Thus, important Aspects 
could include Saliency (the emotional reaction a user has to a 
recommendation), Spread (the diversity of items from across the 
DL), Adaptability (how a recommender changes as a user 
changes), and Risk (recommending items based on confidence).  
Through these Aspects we can map this task to the appropriate 
algorithms, as algorithms are mapped to aspects via a variety of 
metrics [18]. One of the strengths of HRI is that it only claims the 
mappings exist.  While it provides suggestions for creating the 
mappings automatically, we believe user input is critical to get the 
mappings correct.  In this paper, we add users into this feedback 
loop by asking them to evaluate these mappings independently. 

3. RECOMMENDING PAPERS 
We focused on four recommender algorithms to cover in this 
domain: three collaborative algorithms and one content-based.  
We selected User-Based Collaborative Filtering (CF), a Naïve 
Bayesian Classifier, a version of Probabilistic Latent Semantic 
Indexing (PLSI), and a textual TF/IDF-based algorithm.  We 
chose these because they represent a spread of recommendation 
approaches and are well known in the research community.  Table 
3-1 has a summary of the four algorithms. 

To generate paper recommendations, a content-based algorithm 
would mine the text of each paper, and correlate an input stream 
of words to mined papers.  The collaborative algorithms, on the 
other hand, ignore paper text.  Further, instead of relying on user 
opinion to generate recommendations, previous work has mined 
the citations between papers to populate the ratings matrix for CF 
recommendations [21, 31].  In this model, each paper “votes” for 

the citations on its reference list.  Thus, papers are “users” and 
citations are “items”—papers receive citation recommendations.  
When an author puts a citation in a paper she writes, it is an 
implicit vote for that citation.  All of the collaborative algorithms 
use this data to train models and generate recommendations.  
While Byes and PLSI could be trained on many different features, 
we are only considering them as collaborative algorithms and 
training them with citation data. 

In this collaborative model, a paper is a collection of citations; the 
content is ignored.  Moreover, any collection of citations can be 
sent to the recommender algorithm for recommendations (a 
‘pseudo-paper’, if you will).  For example, we could send one 
paper’s worth of citations or one author’s entire bibliography of 
citations to the recommender.  The interaction with the 
recommender is the same in both cases, but the meaning behind 
the interaction could be quite different. 

Table 3-1: Summary of Recommender Algorithm Properties 

 Run-time 
Speed 

Pre-
Process 

Expected 
Rec. Type 

User-User 
CF Slow None High 

Serendipity 
Naïve 
Bayes Fast Slow High 

Ratability 

PLSI Very Fast Very Slow “Local” 
Serendipity 

TF/IDF Very Slow Fast High 
Similarity 

 

3.1 User-based Collaborative Filtering 
User-based Collaborative filtering (CF) has been widely used in 
recommender systems for over 12 years.  It relies on opinions to 
generate recommendations: it assumes people similar to you also 
have similar opinions on items as you do, thus their opinions are 
recommendations to you.  The most well known algorithm is 
User-based collaborative filtering (a.k.a. User-User CF, or 
Resnick’s algorithm), a k-nearest neighbor recommendation 
algorithm [10, 26].  To generate recommendations for a target 
user, a neighborhood of k similar users is calculated, usually using 
Pearson correlation, and the highest weighted-average opinions of 
the neighborhood are returned as a recommendation list.  

User-based collaborative filtering has many positives and 
negatives.  It is a well-known and studied algorithm, and it has 
typically been among the most accurate predictors of user ratings.  
Because of this, it can be considered the “gold standard” of 
recommender algorithms.  Conceptually, it is easy to understand 
and easy to implement.  It has a fast and efficient startup, but can 
be slow during run-time, especially over sparse datasets.  Choice 
of neighborhood sizes and similarity metrics can affect coverage 
and recommendation quality.  It is felt in the community that 
User-based CF can generate ‘serendipitous recommendations’ 
because of the mixing of users across the dataset, but the structure 
of the dataset greatly affects the algorithm—it is possible that for 
some users, a User-based CF algorithm will never generate high 
quality recommendations. 

There are many other variations of collaborative filtering, 
including item-based CF [27], content-boosted CF [8, 22], CF 
augmented with various machine learning optimizations [2, 4, 12], 
as well as hybrid approaches [3].  In this paper, we chose User-
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based CF for its simplicity, high quality recommendations, and 
familiarity in the recommender systems community. 

Based on results of previous work, we expect User-based CF to 
perform very well generating research paper recommendations.  
Since we are guaranteed each item in a digital library rates other 
items (all papers cite other papers!), we expect good level of 
‘cross-pollination’ for serendipitous recommendations as well as 
high coverage.  While the size of ACM Digital Library is not 
overwhelmingly large, issues of scale and sparsity are relevant if 
User-based CF is applied to larger databases, such as the PubMed 
digital library from NIH, containing over 16 million citations [23]. 

3.2 Naïve Bayes Classifier 
If we assume independence of co-citation events in a research 
paper, then a Naïve Bayes Classifier [1] can be used to generate 
citation recommendations.  All co-citations pairs are positive 
training examples.  Posterior probabilities are the likelihood an 
item is co-cited with items (citations) in the target paper class.  
Items that are strongly classified as belonging to the target paper 
class are returned as recommendations (usually a top-n list). 

A Bayes Classifier also has many pros and cons.  It is a well-
known and established algorithm in the machine learning 
literature.  The independence assumption between co-citation 
pairs is a large one to make, but even in domains where this 
assumption fails, this classifier still performs quite well [6].  The 
classifier requires a model to generate recommendations, and this 
model must be re-built when new data is entered—a potentially 
slow process.  Generating recommendations, however, is quick. 

Because at heart, a Naïve Bayesian Classifier is a classification 
algorithm, we have specific expectations for it.  Classifiers 
calculate ‘most likely events’; they determine what classes items 
belong to.  From a user’s point of view in a recommender, a 
classifier returns the next most likely item the user will rate.  This 
‘ratability’ property of classifiers may not match a user’s 
expectations in a recommender.  As such, we believe that the 
recommendations would be more “mainstream”, and not as 
serendipitous as User-based CF.  Finally, full coverage could 
make a difference in low-data situations. 

3.3 Probabilistic Latent Semantic Indexing 
Probabilistic Latent Semantic Indexing (PLSI) is a relatively new 
algorithm to be applied to recommender systems [11].  PLSI is a 
probabilistic dimensional reduction algorithm with a strong 
mathematical foundation.  In PLSI, the ratings space (citation 
space) is modeled using a set of independent latent classes.  A 
user (i.e. paper) can have probabilistic memberships in multiple 
classes.  PLSI uses a variant of the EM algorithm to optimize the 
class conditional parameters through a variational probability 
distribution for each rating (citing) instance based on previous 
model parameters.  Items (citations) with the highest probabilities 
relative to the latent classes are recommended  

Similar in spirit to the Bayes classifier, PLSI has similar benefits 
and drawbacks.  It is mathematically rigorous, using latent classes 
to find probabilistic relationships between items.  Model creation 
takes a very long time, requiring exceptional computing resources, 
but runtime is very efficient.  It also will have 100% coverage.  
The latent classes are the key feature of this algorithm, thus 
performance and quality are highly dependent on the number of 
latent classes used. 

This is a relatively new algorithm in this domain.  We believe the 
latent aspect of this algorithm makes it more like User-based CF: 
generating interesting and serendipitous recommendations.  In 
some ways, PLSI is like a ‘soft’ clustering algorithm, creating 
clusters around the latent classes.  By performing local 
maximizations, the EM nature of the algorithm could reinforce 
more “popular” connections between items at the expense of 
“further reaching” (and potentially more interesting) connections, 
thus recommendations could be interesting locally, finding 
unexpected papers closely related to the input, but not interesting 
for finding a broad set of items from across the dataset. 

3.4 Content-based Filtering with TF/IDF 
Content-based filtering for papers uses the full text to generate 
recommendations.  One of the most popular and well-used content 
filtering algorithms is Porter-stemmed Term Frequency/Inverse 
Document Frequency (TF/IDF) [25].  By using the frequency of 
stemmed words in a document compared to the entire corpus, this 
algorithm recommends items based on how well they match on 
important keywords. 

TF/IDF is well known in the information retrieval community, 
and is considered as the standard vector-space model (a.k.a. “bag 
of words”) approach to information processing.  Since all papers 
contain content, they can be immediately processed, and thus 
recommended.  This compares to the collaborative methods where 
the strength of the citations can unduly influence 
recommendations towards older, more cited works.  Yet, “bag of 
words” content analysis is limited by semantic differences (e.g. 
“car” is not equated to “automobile”).  It also may return many 
irrelevant results, recommending papers who mention the search 
terms only in passing.  These issues are not as important in 
scientific literature as papers in one area have a generally agreed-
upon vocabulary.  Finally, TF/IDF does have an associated cost in 
pre-processing time and storage space, like other model-based 
algorithms. 

Prior results show that when Content-based Filtering works, it 
performs very well at generating highly similar results.  But more 
often than not, it fails to generate relevant results.  This cherry-
picking behavior limits it usefulness, especially when searching 
for novel or obscure work.  On the other hand, this algorithm may 
excel at more conservative user tasks, especially those that start 
with a fair amount of information (e.g. “I know many of the 
conference papers in this research area, but I don’t know about 
journal papers or workshops”).  In general, we expect it to 
generate a narrow, yet predictable kind of recommendation list. 

4. THE USER STUDY 
Previous simulation experiments suggest recommender algorithms 
behave differently from each other on a variety of metrics [18].  In 
this study, we tackle the following research questions: 

• How will real users describe the recommendations generated 
by different recommender algorithms? 

• How will users rate the ability of recommender algorithms to 
meet the needs of specific user tasks? 

4.1 Experimental Design 
In the experiment, we generated two recommendation lists of five 
items each, called ‘List A’ and ‘List B’.  These recommendation 
lists were based on a ‘basket’ of papers that the user provided to 
us.  Users were randomly assigned two algorithms; the display of 
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the lists was counterbalanced to cancel any possible order effects.  
Algorithm recommendation lists were pre-screened to make sure 
there was not strong overlap between result lists.  At most, lists 
had 2 out of 5 recommendations in common.  Since order is 
important in the returned results, if there was overlap, the list that 
has the shared result ‘higher up on the list’ retained the item.  In 
the rare event of a tie, List A always won. 

Our dataset is based on a snapshot of the ACM Digital Library, 
containing over 24,000 papers.  For each paper, we have text of 
the paper’s abstract; each paper cites at least two other papers in 
the dataset and is cited by at least two other papers in the dataset. 

Users were recruited from several different pools.  A subject 
either had to be an author of papers appearing in the dataset or be 
“very familiar” with the literature in a particular research area.  
Users were mined from the DL itself: a random selection of users 
who authored more than five papers in the dataset were sent an 
email invitation to participate.  We also sent invitations to several 
computer science mailing lists asking for participants.  

As a summary, the following algorithms were used in the online 
experiment: 

1. User-based collaborative filtering at 50 neighbors, we used 
the SUGGEST Recommender as our implementation [14] 

2. Porter-stemmed TF/IDF content-based filtering over paper 
titles, authors, keywords, and abstracts; we used the Bow 
Toolkit as our implementation [17] 

3. Naïve Bayes Classifier trained using co-citation between 
papers as its feature; we used a custom implementation 

4. Probabilistic Latent Semantic Indexing with 1000 classes; we 
used a unary co-occurrence latent semantic model and 
tempered our EM algorithm to avoid overfitting  

4.2 Experiment Walkthrough 
After consenting, subjects were asked as to their status as a 
researcher/academic (novice, expert, or outside the field of 
computer science) and as to their familiarity with the ACM 
Digital Library.  Next, subjects were asked to create their ‘basket’, 
a list of papers to be sent to the recommender engines.  This list is 
seeded by the name of an author who has published in the ACM 
Digital Library.  There were options for selecting ‘yourself’ as an 
author or selecting ‘someone else’.  Figure 4-1 shows the author 
selection page.  

After confirming the author selection, the subject was presented 
with a list of papers by that author in our dataset.  The subject was 
allowed to prune any papers he did not want in the basket.  If the 
subject stated he was an author himself, he saw a listing of papers 
he had written as well as a listing of papers he had cited from our 
dataset.  If the subject selected another author, he was only 
presented with the listing of papers that author had published in 
our dataset.  This decision had great implications on our results, as 
we will discuss later. 

After pruning was finished, we presented the user with a selection 
of two possible information-seeking tasks, see Table 4-1.  After 
selecting a task, the subject received two recommendation lists.  
See Figure 4-2 and Figure 4-3 for an overview of the paper 
selection and recommendation interfaces.  There were two pages 
of questions associated with the recommendation lists.  On the 
first page, we asked comparative questions: user opinion about the 

kinds of papers appearing on the lists.  On the second page, we 
asked task-related questions: rating the suitability of each list to 
meet the subject’s chosen information seeking task. 

 

 
Figure 4-1: The Author Selection Page 

 

 
Figure 4-2: The Paper and Citation Selection Page 

 

 
Figure 4-3: The Recommendation List Screen 
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Table 4-1: Available Information Seeking Tasks 

Group Available Tasks 

My bibliography is a list of papers that are important to my 
research.  Locate papers that I might want to cite in the future 
(or perhaps that should have cited me!).  These other papers 
would be related to my work and would help me in my current 
research efforts. Author, with my 

own work Given my bibliography as a description of what I find 
interesting in research, locate papers I would find interesting to 
read.  These papers would not necessarily be work in my area, 
and could suggest potential collaborators or new research 
questions to explore in the future. 

You would like to build a list of papers to describe a research 
area, and you started with this input basket.  You are 
concerned about covering the area and want to make sure you 
no not miss any important papers.  Which papers would next 
appear on this list? 

Someone else’s 
publications You are looking to expand your research interests into new or 

related areas, hoping to find interesting papers to read.  Your 
input basket represents some papers in your current research 
area and interests.  What papers might expand your 
knowledge, find new collaborators, or suggest new research 
areas to explore in the future? 

 

Table 4-2: Survey Questions for Both Pages 

Page 1: Comparative Questions 

1-1 I would consider most of the papers on this recommendation list as 
authoritative works in their field. 

1-2 Most of the papers on this recommendation list are papers that that I have 
previous read, I am familiar with, or I have heard of. 

1-3 This recommendation list is closely tuned-tailored-personalized to my given 
input basket, and is not a generic list of papers in this research area. 

1-4 This list feels like a good recommendation list.  I like it.  It resonates with me. 

1-5 This recommendation list contains papers that I was not expecting to see, but 
are good recommendations considering my input basket. 

1-6 This list contains a good spread of papers from this research area and is not 
overly specialized, given the input basket. 

Page 2: Task-related Questions  

2-1 In your opinion, which recommendation list generated a better set of 
recommendations for you and your task? 

2-2 How satisfied are you with the recommendations in the list you preferred? 

2-3 
Pretend you were going to perform the alternate task, the one you did not 
choose (see above).  In your opinion, which recommendation list generated a 
better set of recommendations for this other task? 

2-4 
We have the ability to send you a text file containing the standard ACM citation 
format for these recommendation lists. Would you like to keep a copy of these 
recommendation lists? 

2-5 If so, which format would you prefer? 

Note:  For referencing, questions may be referred by number or by the bolded text in the 
question.  No words were bold in the online survey. 

 

Table 4-3: Number of Users per Experimental Condition 

Algorithm Pair Users 
User-User CF and TF/IDF 24 

User-User CF and Naïve Bayesian 28 
User-User CF and PLSI 25  

TF/IDF and Naïve Bayesian 24 
TF/IDF and PLSI 18 

Naïve Bayesian and PLSI 23 
 

A summary of all questions is in Table 4-2.  On the first page, 
there were five possible responses to each question: ‘Strongly 
Agree’, ‘Agree’, ‘Disagree’, ‘Strongly Disagree’, and ‘Not Sure’.  
Question 2-1, asking which list was better for the chosen task, had 
two options: ‘List A’ and ‘List B’.  We forced users to choose 
between the lists.  In Question 2-2, we ask for the user’s 
satisfaction with that selection, and responses ranged from ‘Very 
Satisfied’ to ‘Very Dissatisfied’, with a ‘Not Sure’ option.  
Question 2-3 was a hypothetical question, asking users to ponder 
the better list for the alternate task, and it had ‘List A’, ‘List B’, 
and ‘Not Sure’ as its possible responses.  Note that for the 
hypothetical question we allowed a ‘Not Sure’ response.  In 
Question 2-4, we offered users an option to receive a copy of the 
citations we generated for them, asking which citations they 
would prefer: ‘List A Only’, ‘List B Only’, ‘Both Lists’, or 
‘Neither List’.  Finally, in question 2-5, we asked them which 
format they would prefer: ‘the ACM DL BibTex Format’ or the 
‘Standard ACM Citation Format’.  While at first glance, 
Questions 2-4 and 2-5 appear to be a thank-you service for users 
participating in our study, we wanted to study the difference 
between stating they are satisfied with a recommendation list, and 
choosing to receive a copy of the list for future use—the 
difference between action and words.  We believe action is a 
much stronger statement of satisfaction.  

4.3 Results 
138 subjects completed the survey over the 3-week experimental 
period.  There were 18 students, 117 professors/researchers, and 7 
non-computer scientists.  All but six subjects were familiar with 
the ACM Digital Library, 104 used it on a regular basis.  Each 
subject was assigned to two algorithms, see Table 4-3.  We will 
first present overall survey results followed by algorithm-pair 
interactions and conclude with results by user selected task. 

4.3.1 Survey Results: Comparative Questions 
Figure 4-4 and Figure 4-5 summarize the results for the six 
questions on the first page.  Answers have been binned into three 
categories:  ‘Agree’, ‘Disagree’, and ‘Not Sure’.  As the figures 
show, there is a dramatic difference in user opinion about the four 
algorithms.  Users tended to like (‘agree’ with) User CF and 
TF/IDF, where as users tended to dislike (‘disagree’ with) Bayes 
and PLSI.  Results between these pairs are exceptionally 
significant (p << 0.01).  We have found a pitfall; we discuss these 
unusual results in a separate in-depth analysis. 

Focusing on User CF and TF/IDF, differences are statistically 
significant for Question 1-2 (p < 0.01) and almost so for Question 
1-1 (p = 0.11).  That is, User CF is more authoritative and 
generates more familiar results than TF/IDF.  The trends on the 
other four questions also suggest that User CF generates 
recommendations that are more ‘interesting’. 

4.3.2 Survey Results: Task-Related Questions 
There were two kinds of information-seeking tasks: “Find closely 
related papers”, and “find more distant paper relationships”.  
Users were required to select one of these tasks before receiving 
recommendations.  Figure 4-6 shows how users judged the 
suitability of each of the four algorithms to their chosen task.  
Please note: users were forced to answer Question 2-1; there was 
no ‘Not Sure’ option.  Continuing the above trend, users chose 
User CF and TF/IDF over Bayes and PLSI at about a 3:1 ratio (p 
< 0.01).  Question 2-2 asked users about how satisfied they were 
with the algorithm they chose.  Users were not pleased with Bayes 
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or PLSI (all results for Bayes were ‘Disagree’!), and were happy 
(‘agree’) with User CF and TF/IDF just over half of the time. 

Question 2-3 asked which algorithm would be best for the task the 
user did not select.  When asked about this alternate task, 56% 
chose the same algorithm, 16% chose the other algorithm, and 
28% were not sure.  This trend carried across all four algorithms, 
except for Bayes, where ‘Not Sure’ was selected 50% of the time. 

The final questions asked users if they wanted to keep a copy of 
the recommendations.  While offered as a service, it provides an 
insight into user satisfaction.  32% of all users elected to ‘keep a 
copy’.  67% of satisfied users chose to while only one user who 
was ‘dissatisfied’ chose to.  Finally, users chose to keep 
recommendations generated from User CF and TF/IDF over 
Bayes and PLSI again at a 3:1 ratio (p < 0.01). 

4.3.3 Results across Algorithm Pairs 
Users answered questions in the context of a pair of algorithms.  
The comparative questions showed minor levels of interaction.  
When either User CF or TF/IDF was paired with Bayes or PLSI, 
users tended to score algorithms towards the extremes, most 
notably for questions 1-2 (“familiarity”), 1-3 (“personalized”), 
and 1-4 (“good recommendation list”).  There were no discernable 
effects when User CF was paired with TF/IDF or when Bayes was 
paired with PLSI. 

When answering task-related questions, User CF and TF/IDF 
dominated over Bayes and PLSI.  When shown together, User CF 
was selected 90% of the time over Bayes and 95% over PLSI.  
TF/IDF was selected 88% and 94%, respectively.  Compared 
against each other, User CF was selected more frequently (60%) 
than TF/IDF.  Bayes and PLSI were preferred an equal number of 
times when placed together.  More interestingly, when paired 
against Bayes and PLSI, User CF received higher praise, earning 
all of its ‘Very Satisfied’ scores in these cases.  TF/IDF saw no 
such increase. 

When asked for algorithm preferences for the alternate task, users 
rarely switched algorithms.  Of the switches between algorithms, 
users switched to PLSI 9% of the time, and switched to Bayes 
20% of the time.  Users who first chose PLSI or Bayes always 
switched to either User CF or TF/IDF.  Between User CF and 
TF/IDF, users were twice as likely to switch from User CF to 
TF/IDF as vice-versa. 

4.3.4 Results by User-selected Task 
There was a 60%-40% split between subjects selecting the 
“closely related papers” task or the “distant relationships” task.  
Responses showed some significant differences across tasks for 
different algorithms.  For example, User-CF was more 
authoritative for the “close” task (p < 0.05), whereas TFIDF was 
more familiar for the “distant” task (p < 0.005).  Further, PLSI 
was more personalized for “narrow” (p < 0.01), and both User-CF 
and PLSI were more unexpected for “distant” (p < 0.05 and p < 
0.075, respectively).   
Task selection was a 2x2 grid, where subjects also chose “Self” 
vs. “Someone else”.  85% of subjects selected “Self”.  The above 
results are also significant for “Self”-only subjects.  Trends in the 
“Someone else”-only subjects also support the results above. 
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Figure 4-4: Displayed from Left to Right, Results for the 
Comparative Questions on ‘Authoritative Works’, 
‘Familiarity’, and ‘Personalization’ 
 

Comparative Results, Second Three Questions 
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Figure 4-5: Displayed from Left to Right, Results for the 
Comparative Questions ‘Is a Good Recommendation’, ‘Not 
Expecting’, and ‘Good Spread’ 
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Table 4-4: Overlap for Top 10 Recommendation Lists by 
Basket Size.  Computed as the average of the intersection / 
union for all possible pairs in basket range.  The lower the 
score, the fewer shared items.  0 means no overlap 

 < 5 5 - 15 15 - 30 30+ 
Bayes 0.22 0.36 0.20 0.04 
PLSI 0.01 0.01 0.002 0.004 
TF/IDF 0.002 0 0 0.03 
User 0 0 0.001 0.04 

 

4.4 Analysis and Discussion 
Before discussing the results of this study, we first perform a 
closer analysis of the atypical results we found and review our 
results for any potential order bias. 

4.4.1 Analysis of Atypical Results 
The Bayes and PLSI algorithms did not perform as expected.  
Prior work suggests that a Naïve Bayesian Classifier should be 
similar to User-based CF in this domain [21], and PLSI has shown 
to be of high quality in other domains [11].  What happened? 
A careful review of our logs reveals that Bayes was generating 
similar recommendation lists for all users.  Looking at top-10 
recommendations lists, on average 20% of the recommended 
papers were identical for all users.  Instead of returning 
personalized recommendations, Bayes returned the most highly 
co-cited items in the dataset.  Changing the input basket size was 
did not have an effect: see Table 4-4.  Trend data suggests as 
overlap increased, user satisfaction decreased across all questions, 
most notably for ‘personalization’ and ‘good spread’, but also for 
task usage as well. 
PLSI was doing something equally as odd.  While it returned 
personalized recommendations, a random sampling from logs 
revealed seemingly nonsensical recommendations.  For example, 
an input basket composed of CHI papers received 
recommendations for operating system queuing analysis.  We 
were unable to determine any patterns in the PLSI behavior. 
In this work, the input basket size varied greatly (average of 26 
items, stddev 32.6), with many baskets containing five or fewer 
items.  Much as search engines need to return relevant results with 
little input [29], recommenders in this domain need to adapt to a 
variety of user models.  User CF and TF/IDF we able to do so, 
Bayes and PLSI were not. 

Yet, it is not accurate to say the algorithms ‘failed’—some users 
did receive high quality recommendations.  Rather, Bayes and 
PLSI were inconsistent.  While Bayes averaged an overlap score 
of 0.20, the standard deviation was 0.26.  We believe the quality 
of the recommendations generated by these two algorithms 
depended on how well-connected items in the input basket were to 
the rest of the dataset, especially for Bayes.  For example, in our 
tests, adding one well-cited item to a questionable Bayesian 
basket radically improved the results.  Adding such items to PLSI 
was not always as helpful.  In PLSI, we believe many of the latent 
classes were ‘junk classes’, thus to improve recommendations, 
items from good classes need to be in the input basket. 

4.4.2 Order Bias 
The experiment was cross-balanced, so each algorithm appeared 
an equal number of times as List A and List B.  With this balance, 
we were able to detect an order bias, where people preferred List 

A (on the left) to List B (on the right).  Specifically, equal 
numbers of people selected List A and List B as their preferred list 
(Question 2-1).  But those who chose List B were less satisfied 
with their selection (Question 2-2) (p < 0.10).   

4.4.3 Comparative and User Task Analysis 
The atypical results of the two recommender algorithms have 
skewed the results of the survey, making a detailed comparative 
analysis difficult.  For User CF and TF/IDF, users recognized the 
recommendations and deemed them authoritative in their research 
area, but the lists did not contain unexpected results, and users 
were not sure if the recommendations contained came from a wide 
spread of the dataset.  The differences between User CF and all 
other algorithms for authority and familiarity were significant. 
These results are different from previously published work where 
User CF generated more unexpected recommendations than 
TF/IDF.  We do reinforce the result that User CF generates 
authoritative paper recommendations.  Further, previous work 
suggested that TF/IDF had a higher level of user satisfaction, 
whereas here, both algorithms received positive scores.  Of 
course, the interaction effects may have influenced user responses, 
especially for User CF. 
TF/IDF showed to be equally as useful for all four given user 
tasks with around a 54% satisfaction rating for all tasks.  User CF 
showed a higher satisfaction rating (60%) for the ‘find closely 
related papers’ task.  These results also reinforce previous 
findings, but only in context of the possible interaction effects. 
Finally, we showed user opinion of algorithms varied by task.  
That is, depending on the current task, users perceived differences 
among algorithms across multiple dimensions.  This is the first 
experimental evidence in support of HRI, suggesting that the 
qualities of algorithms important to users vary according to task. 

4.4.4 Dataset Limitations 
While our dataset was of high quality, it contained several 
limitations.  The two striking ones are the scope of the data and 
range of the data.  Only items for which the ACM holds copyright 
were contained in this dataset, many relevant papers were not 
included.  Due to the nature of the DL, the bulk of items were 
published in the last 15 years.  Finally, items had to cite other 
items and be cited by other items in the dataset.  This limitation 
excluded much of the newest published work.  We received 
several emails from users complaining about these limitations, 
including requests to add their work to our dataset, statements that 
they have changed research fields, and concerns for only receiving 
recommendations for older papers.   
Further, these limitations may have affected PLSI’s and the Naïve 
Bayesian Classifier’s performance.  While all papers were 
connected to each other, many were only weakly so.  Both of 
these algorithms use strong statistical models as a basis for their 
recommendations.  When calculated over a dataset such as this 
one, the meaningful statistics could be ‘washed out’ by the other 
calculations.  In Bayes, a paper with a strong prior probability 
could influence posterior probabilities, or perhaps the naïve 
assumption was one we should not make in this domain.  In PLSI, 
the local maximization calculations could reinforce stronger 
global calculations in place of the weaker, yet meaningful local 
connections.  Finally, is worth asking the question if measuring 
co-citations is the correct mapping for recommenders in this 
domain.  A complete analysis and discussion, however, is outside 
the scope of this paper. 
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5. IMPLICATIONS AND FUTURE WORK 
As previously mentioned, Bayes and PLSI perform well as 
recommenders in offline simulation experiments.  Specifically, 
both have scored well on accuracy metrics in using a leave-n-out 
methodology [1, 11].  As we have argued elsewhere (i.e. [19, 20]) 
such offline measures may not translate into useful measures for 
end users. 

In particular, Bayes recommended users a combination of 
personalized and non-personalized recommendations.  In many 
cases, the personalized recommendations were good suggestions.  
In fact, in offline leave-n-out scenarios, it did not matter that the 
recommendation lists contained a mixture of highly personalized 
and non-personalized items, as long as the withheld item appeared 
on the list, the algorithm scored well on the metric [20].  Users, 
however, were not satisfied with these recommendation lists.  
These results suggest that the research community’s dependence 
on offline experiments have created a disconnect between 
algorithms that score well on accuracy metrics and algorithms that 
users will find useful. 

This argument is even more subtle.  In our testing of HRI, we 
performed an offline analysis of recommendation lists using a 
series of non-accuracy-based metrics.  If the Naïve Bayes 
Classifier were generating a mixture of personalized and non-
personalized results, a personalization metric should have 
revealed this problem.  In our results, Bayes generated very 
personalized responses [20].  The difference between then and 
now is the input baskets.  The baskets then were based on the 
citations from a single paper; usually such lists contain a mixture 
of well and loosely connected papers, lists for which Bayes could 
generate personalized recommendations.  The input baskets here 
were different—they were based on papers written by a single 
author.  This reveals not just the importance of the dataset but also 
the importance of the input basket when analyzing algorithms.  
The disconnect is even larger than we thought. 

In previous work, we argued that showing one good 
recommendation in a list of five was enough to satisfy users.  It is 
not that simple: showing one horrible recommendation in five is 
enough for users to lose confidence in the recommender.  We call 
this the Don’t Look Stupid principle: only show recommendation 
lists to users when you have some confidence in their usefulness.  
While this principle applies most dramatically when talking about 
Bayes and PLSI in our results, we believe it is just as important 
when dealing with users’ information seeking tasks.  A 
recommendation list is bad when it is not useful to the user, 
independent of why it is bad. 

To understand this principle in context, we can use HRI.  This 
experiment was one-time online user survey.  These users had no 
previous experience with the recommender algorithms, and they 
were given an information seeking task.  Because of this, many 
HRI Aspects are not relevant to our discussion, but a few become 
very important, such as: Correctness, Saliency, Trust, and 
Expectations of Usefulness.  By being asked to be in an 
experiment, users had a heightened awareness of the 
recommendation algorithms; they expected the algorithms to be 
useful and they expected them to generate correct results.  Indeed, 
we received several emails from users worried about the poor 
recommendations they received from either Bayes or PLSI.  We 
had no time to build trust with our users, nor did the users gain a 
sense of the algorithms’ personality.  When users received 

nonsensical results, we believe they had a strong emotional 
reaction.  The results went against their expectations of being an 
experiment to receive personalized recommendations.  Thus, the 
users provided the strong negative feedback. 

There many threads of possible future work.  First, we need a 
deeper understanding of Bayes and PLSI in this domain.  How 
much of the difficulties experienced in this work are related to 
properties of the algorithms, properties of the dataset and input 
baskets, or implications of how these algorithms were applied in 
this domain?  Second, while this study provides evidence to the 
tenet of HRI that specific recommender algorithms are better 
suited to certain information needs, more work needs to be done.  
Yet it does raise one interested question from our HRI analysis, 
could a recommender be ‘stupid’ in front a user with whom the 
recommender has already built a relationship?  This work must be 
done with real users; offline analysis is not enough.  Finally, the 
performance of Bayes and PLSI in this domain suggest that 
dataset properties and input basket selection greatly influence 
recommendation lists, implying the need for a study comparing 
multiple datasets across multiple algorithms. 

6. CONCLUSIONS 
Recommending research papers in a digital library environment 
can help researchers become more productive.  Human-
Recommender Interaction argues that recommenders need to be 
approached from a user-centric perspective in order to remain 
relevant, useful, and effective in both this and other domains.  
HRI suggests tailoring a recommender to a user’s information 
need is a way to this end.  To test these ideas, we ran a study of 
138 users using four recommender algorithms over the ACM 
Digital Library.  Instead of validating our research questions, we 
ran into a large pitfall and discovered a more telling result: Don’t 
Look Stupid.  Recommenders that generate nonsensical results 
were not liked by users, even when the nonsensical 
recommendations were intermixed with meaningful results.  
These results suggest that it is critically important to select the 
correct recommender algorithm for the domain and users’ 
information seeking tasks.  Further, the evaluation must be done 
with real users, as current accuracy metrics cannot detect these 
problems. 
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