CHI‘95 MOSAIC OF CREATIVITY = May 7-11 1995

Demonstrations

DynaDesigner: A Tool for Rapid Designh and Deployment of
Device-Independent Interactive Services

Loren Terveen, Elena Papavero, Mark Tuomenoksa

AT&T Bell Laboratories
{terveen, elenap, mlt} @research.att.com

ABSTRACT

DynaDesigner is a tool for creating, testing, and deploying
interactive services to be delivered on devices such as tele-
phones, TVs, and PCs. A key feature is that it supports
device-independent service design — a service is designed
once, independent of any particular device. This eases the
design and maintenance task for service providers and makes
services easier for consumers to use, since they are consistent
across devices. DynaDesigner has been used to design and
deploy many services. With DynaDesigner, services can be
designed and deployed in hours.

KEYWORDS: service creation tools, device-independent
design, end user programming, consumer systems

HELP SERVICE USERS BY HELPING SERVICE CREATORS
The convergence of computers, communications, and con-

sumer electronics brings a new urgency to the problem of
creating easy to use systems — now all people with telephones

and TVs, not just PC owners, are potential users. Further,

the proliferation of devices raises the challenge of creating

device-independent services — consumers may want to use a
single service such as home banking on different devices, such
as telephones, TVs, PCs, or PDAs, and they will want consis-

tency across devices. We have responded to these challenges

by creating a service authoring tool called DynaDesigner.

Direct manipulation, form-based editing, and graphical sim-

ulation are used to design and test services. Code is generated
that implements the service logic on standard hosting plat-

forms. Device-specific interpreters enable the same service

to be delivered on many devices and guarantee a consistent,

high quality interface for each device.

TRANSACTIONAL SERVICES

DynaDesigner targets the class of transactional services that
includes activities such as home banking, bill paying, ticket
purchasing, and catalog shopping. In such services, a con-
sumer completes a transaction by reading or listening to in-
formation, selecting options from menus, and supplying in-

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of ACM. To copy otherwise, or to
republish, requires a fee and/or specific permission.

CHI' Companion 95, Denver, Colorado, USA

© 1995 ACM 0-89791-755-3/95/0005...$3.50

formation such as personal identification numbers.

Such services typically are implemented in a distributed,
network-based architecture. The program that implements
the service runs on a hosting platform— a computer on the ser-
vice provider’s premises or in the telephone network equipped
with special purpose voice and data transmission hardware.
The service provider’s databases typically are on a large main-
frame computer. And the service is delivered on a consumer
device, such as a telephone, TV, or PC. The hosting platform,
database machines, and delivery devices are connected by a
combination of telephone lines and high speed data links.

DynaDesigner
DynaDesigner is a service creation tool that addresses the
following goals:

e Service creation should be fast and easy. Competitive
pressures make speed necessary; speed requires an easy to
use system.

o Services created should be of high-quality. Making service
creation fast and easy is of no use unless consumers want to
use the services.

o Services should be device-independent. A device-independent

representation of services aids service users by ensuring ser-
vice consistency across devices and aids service providers
since they have just one service to design and maintain.

DynaDesigner achieves these goals with two major features:

o Service authoring consists of specifying the service logic
and information content, rather than designing an interface.
DynaDesigner uses interface “templates” to generate an ap-
propriate interface for each delivery device from the same
logic and information content. This helps service providers
by making service design and modification faster and easier.
It helps end users by guaranteeing a consistent, high-quality
interface across services and devices. And itis the key enabler
of device independent services.

e DynaDesigner supports end-to-end service creation. All
aspects of the service, including logic, interaction, data ac-
cess, and call transfer can be specified, and code to imple-
ment the service on a standard hosting platform is generated
automatically. These features are required to make service
deployment and modification fast.

Our service creation building blocks include computational
(or logic) objects, such as objects for accessing databases,
branching based on data comparisons or on the time, date,
or day of week, and transferring calls to customer service

29

Demonstrations

May 7-11 1995 = CHI‘95 MOSAIC OF CREATIVITY

30

representatives. Clearly, the logic of a service is device-
independent — the challenge is coming up with a device-
independent way of specifying user interactions. We do this
by providing a set of generic interaction (or dialogue) ob-
jects that encapsulate common types of interactions — such as
Present Information, Get Input, and Present Options —but do
not specify the surface details of how the interaction should
be carried out. Each type of object has one or more editors
for filling in the information required for that object.

A designer specifies the logic of a service by selecting objects
from a palette, positioning them on a design pad, then linking
the objects. For example, a home banking application might
begin with a Present Information object that welcomes the
user, continue with a Get Input object that asks the user to
enter a personal identification number (PIN) and verifies the
PIN is valid, and next contain a Present Options object that
offers the user a set of home-banking services.

While we keep the core of the service specification device-
independent, we also provide principled ways to specify and
use device-specific information. First, a device-specific in-
terface template for each interaction object is used to generate
the speech or display and manage user input. For example,
suppose a Present Options object contains three options, say
“Account Balance”, “Transfer of Funds”, and “Order New
Checks”. The template for spoken menus and text-to-speech
synthesis would generate the spoken instructions “For Ac-
count Balance, press 17, “For Transfer...”. Users could select
an option by pressing the appropriate key on the touchtone
pad. The template for TV display screens mightresultin each
item being presented on a separate, numbered line. Users
could select an option by pressing the appropriate button on
a universal remote control. Second, device-specific editors
collect information that enhances the presentation of a ser-
vice on a particular device. For example, a phrase manager
for spoken output allows text to be broken up into phrases,
each of which can be spoken using a professionally recorded
voice, and an appearance editor for screen output allows de-
signers to specify bitmaps to use as screen backgrounds and
tailor display properties such as font, background color, etc.

At any time, a service designer may simulate a service, to
determine whether the logic is correct and get a feel for what
the interaction would be like on a specific device. When
the service is complete, DynaDesigner automatically gener-
ates the code to implement it on a standard service hosting
platform. Currently, code is generated for the Conversant,
a special purpose AT&T computer that resides in the AT&T
network or on the premises of a service provider. It can send
and receive voice or data over telephone lines and can com-
municate with other computers as necessary, for example, to
access a database.

We have developed DynaDesigner in close collaboration with
service providers, building many services to ensure ease of
use and broad coverage. DynaDesigner went into production
use in August 1994. More than 20 voice services have been
deployed. Using DynaDesigner dramatically decreased the
time it took to design and deploy a service. The application of
DynaDesigner to interactive TV services is newer, and it was
this that led us to develop the device-independent interaction

objects. To date, we have designed several services based on
these new objects and will be implementing and deploying
these and other such services in the near future.

RELATED WORK

DynabDesigner is related to cross-platform GUI construction
tools and end user programming environments. Like a GUI
builder, it enables the design of an interactive system that
can run on different devices. However, with DynaDesigner,
designers specify dialogue structure and content, not widgets
and layout. Andrather than delivery across different window-
ing systems and interface toolkits, DynaDesigner services are
generic across a range of devices, from televisions to tele-
phones. As an end user programming system, DynaDesigner
enables users who are not programmers to create applications.
Unlike general purpose visual programming [1] or state ma-
chine [3] systems, DynaDesigner is a domain-specific system.
It provides a set of high-level, domain-specific abstractions
for building applications. Other systems exist for creating
voice dialogues, both commercial tools such as Visual Voice
and TFLX, and research prototypes such as the Voice Dialog
Design Environment [2]. Our work is distinguished by our
provision of high-level, device-independent building blocks.
Further, we automatically generate the code to implement
services as network-based, distributed applications, which
typically means that many more customers can be served.

CONCLUSIONS

We conclude by summarizing the lessons this work has taught
us. First, by providing high-level abstractions for creating
services, we both ease the task of service authoring and enable
device-independent services. Service authoring is neither a
programming task nor an interface design task, which leaves
service authors free to concentrate on the service content.
(We are continuing to develop our building blocks in response
to user feedback; for example, we have created objects for
dealing with databases that are simpler to use, encapsulate
both data access and user interaction, and are more cleanly
device-independent.) Second, end-to-end service authoring
requires addressing infrastructure issues; thus, we generate
code to implement services on standard hosting platforms, to
handle distribution of computation in network-based services,
and to interface to legacy databases. The combination of
high-level building blocks and end-to-end service generation
makes DynaDesigner a very usable and useful tool.

REFERENCES
1. Glinert, E.P. Towards “Second Generation” Interactive,
Graphical Programming Environments, IEEE Comp.
Society Workshop on Visual Languages, 1986, IEEE
Press, pp. 61-70.

2. Repenning, A. and Sumner, T. Using Agentsheets to
Create a Voice Dialog Design Environment, In Proc.
ACM/SIGAPP Symposium on Applied Computing,
1989, ACM Press, pp. 1199-1207.

3. Wellner, PD. Statemaster: A UIMS based on State-
charts for Prototyping and Target Implementation, In
Proc. CHI’89, 1989, ACM Press, pp. 177-182.

