
Shilling Recommender Systems for Fun and Profit

Shyong (Tony) K. Lam John Riedl

GroupLens Research
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455
{lam,riedl}@cs.umn.edu

ABSTRACT
Recommender systems have emerged in the past several years as an
effective way to help people cope with the problem of information
overload. One application in which they have become particularly
common is in e-commerce, where recommendation of items can of-
ten help a customer find what she is interested in and, therefore can
help drive sales. Unscrupulous producers in the never-ending quest
for market penetration may find it profitable to shill recommender
systems by lying to the systems in order to have their products rec-
ommended more often than those of their competitors. This paper
explores four open questions that may affect the effectiveness of
such shilling attacks: which recommender algorithm is being used,
whether the application is producing recommendations or predic-
tions, how detectable the attacks are by the operator of the sys-
tem, and what the properties are of the items being attacked. The
questions are explored experimentally on a large data set of movie
ratings. Taken together, the results of the paper suggest that new
ways must be used to evaluate and detect shilling attacks on rec-
ommender systems.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software; H.3.5 [Information Storage and Retrieval]:
Online Information Services

General Terms
Experimentation, Algorithms

Keywords
collaborative filtering, recommender systems, shilling

1. INTRODUCTION
People face a bewildering number of choices when looking for

items that they are interested in. A seemingly never-ending flood
of content is available, but certainly not enough time exists to eval-
uate all possible choices. This, in a nutshell, is the problem of
information overload. In recent years, recommender systems have
emerged as one tool that can help people overcome this problem
and quickly locate items to consume. These systems use opin-
ions about items in some information domain in order to make
Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York USA.
ACM 1-58113-844-X/04/0005.

recommendations to a user regarding which items she may find in-
teresting. One instance of a recommender system is MovieLens
(http://www.movielens.org). GroupLens, our research group, op-
erates this recommender system, which makes personalized rec-
ommendations suggesting movies that a user might like based on
movies that she has seen and has expressed an opinion about.

While recommender systems are clearly beneficial to users, they
can also be a valuable asset to retail companies in helping their
customers find things that they might want to buy and, in effect,
increasing not only sales, but perhaps also cross-sales and customer
retention. This is particularly true in the realm of e-commerce.
For example, Amazon.com has made many recommender systems
available to their customers. These range from manually operated
recommenders where users can recommend items to other users by
writing reviews or creating lists, to automated systems where the
site generates a list of recommended items based on what the user
has looked at recently or has purchased in the past.

Producers of items (manufacturers, authors, etc.) would like
their products to sell well in the marketplace. With recommender
systems, there is a natural motivation to want one’s own products to
be recommended more often than those of a competitor. Of course,
one way to accomplish this is to produce quality goods that people
like and regard highly. However, unscrupulous producers may opt
to take a more deceitful route; they may try to influence recom-
mender systems in such a way that their items are recommended
to users more often, whether or not they are of high quality. An
instance of a company generating false “recommendations” to con-
sumers arose in June 2001 when Sony Pictures admitted that it had
used fake quotes from non-existent movie critics to promote a num-
ber of newly released films.1 The online retailer Amazon.com has
found that their recommenders are prone to some level of abuse on
at least two different occasions.2 ,3 Also, eBay, which uses a rec-
ommender system as a reputation mechanism, has found itself con-
tinually dealing with users who subvert the system in various ways,
including purchasing good ratings (feedback) from other members
in order to bolster their own reputations.4

One way to influence a recommender system is to arrange to
have a group of users (human or agent) enter the system and vouch
for the items in question. These users become shills, whose false
opinions are intended to mislead other users. Shills pose a serious
threat to users and operators of recommender systems. They may
cost users time and money by recommending bad items. They may

1http://news.bbc.co.uk/1/hi/entertainment/film/1368666.stm
2http://www.wired.com/news/ebiz/0,1272,53634,00.html
3http://news.com.com/2100-1023-976435.html
4http://www.auctionbytes.com/cab/abn/y03/m09/i17/s01

cost operators by degrading the user’s level of trust in the recom-
mender system and the retailer behind it.

This paper focuses on recommender systems that use automated
collaborative filtering (ACF) to generate recommendations. ACF
is a class of algorithms commonly used in the implementation of
recommender systems. These algorithms operate on the basis that
similar users have similar tastes; thus, if people similar to you can
be located, then the items they enjoy are likely to be ones you will
also enjoy. These algorithms normally have two modes of opera-
tion: prediction and recommendation. In the prediction mode, the
algorithm simply predicts how much a user will like some item or
set of items. The items may have been selected by the user through
browsing or searching. In the recommendation mode, the algo-
rithm produces an ordered list of items that it believes the user is
most likely to enjoy. This distinction will become important as we
explore the practical effects of attacks on recommender systems.

The rest of the introduction comprises related work and the state-
ment of hypotheses, setting the stage for the experimental work in
the rest of the paper.

1.1 Related Work

1.1.1 Recommender Systems
One of the earliest instances of a collaborative filtering based rec-

ommender system is Tapestry [6]. In 1994, Resnick et al. [16] au-
tomated the collaborative filtering process and introduced an ACF
algorithm based on k-Nearest-Neighbor. Since then, a number of
improvements to kNN have been proposed [9, 8]. The user-user
algorithm we study in this paper is a tuned version of the original
kNN algorithm. Another related algorithm that we study is a tuned
version of the item-based k-Nearest-Neighbor [18]. We call this
algorithm the item-item algorithm in this paper. Many other rec-
ommendation algorithms have been developed as well, including
ones based on singular value decomposition [17], Bayesian net-
works [2], and factor analysis [3].

Besides MovieLens, a myriad of other recommender systems ex-
ist, particularly on e-commerce sites. Schafer [19] examines and
categorizes a large set of these commercialized recommender sys-
tems. In addition, numerous recommenders in a variety of domains
have been developed for research purposes, including GroupLens
(Usenet news) [11], Ringo (music) [20], and Jester (jokes) [7].

1.1.2 Attacks on Recommenders
While a large body of work exists on recommender system algo-

rithms, less attention has been devoted to exploring and improving
their resistance to attacks. Dellarocas [5] outlines several attacks
on reputation systems used in online trading communities such as
eBay and proposes a predictive algorithm similar to existing col-
laborative filtering algorithms which helps minimize the effect of
the attacks. Canny [3] presents a system in which user preferences
(ratings) are kept private both from the recommender system’s ad-
ministrators and from other users, which he believes can mitigate
attacks where the system administrators are involved (e.g. a retailer
being paid to place a company’s items highly on recommendation
lists).

More recently, O’Mahony et al. [14] have performed empirical
studies of the resistance of the kNN user-user algorithm to attacks
based on injecting a number of shill users into the system. The at-
tacks were shown to be successful both at push-ing items by raising
predicted ratings, and at nuke-ing items by lowering predicted rat-
ings. Furthermore, they present a theoretical analysis of the effect
of noise – perhaps injected by shills – on the performance of ACF
algorithms and perform several experiments with real-world data

sets to evaluate the generated models. Our paper builds on their
work by including more recommender algorithms and by evaluat-
ing the attacks on recommendations as well as on predictions.

1.1.3 Impact of Successful Attacks
Psychologists have shown experimentally that people tend to con-

form with the opinions of others, even when those opinions may be
incorrect. This was the case in the classic conformity study by
Asch [1] where test subjects were asked to perform a simple task in
a small group. The other members of the group were working for
the experimenter and deliberately gave incorrect responses. Even
though the correct choice was easy to see, the test subjects agreed
with the group and made the wrong choice in one-third of all trials.

A similar effect is likely to occur in interactions between com-
puters and people. Nass and Moon [13] find that people tend to
treat computers as they would treat people – in one of their experi-
ments, they show that people are less likely to criticize a computer’s
performance if that computer asks for the evaluation than if another
computer asks.

Cosley et al. [4] find that users are indeed affected by manipu-
lated predictions provided by a recommender. As suggested by the
conformity studies mentioned above, users tend to rate items to-
ward the predicted rating provided by the recommender regardless
of prediction accuracy. Whether this represents a genuine change
in opinion is unknown – it might just be that users conform in what
they say, not in what they believe – but the result indicates that
it may very well be possible that some users can be fooled into
accepting a bad recommendation. Further, the manipulated predic-
tions experiment suggests that shilling may be doubly dangerous,
since affected users may rate towards the manipulated predictions,
influencing other users who trust them.

1.2 Hypotheses
The previous research on shilling has demonstrated that shilling

should be of concern in recommender systems, but leaves several
important questions unanswered. The first of these questions is
about how effective shilling is on finely tuned versions of the user-
user [9] and item-item [18] algorithms. Though the algorithms are
based on fundamentally similar ideas about relationships between
users and items, their implementations are sufficiently different that
we suspect they may exhibit different behavior under shilling at-
tack. Formally:

HYPOTHESIS 1. Different ACF algorithms respond differently
to shilling attacks.

This hypothesis has importance for designers of ACF algorithms,
who may be able to design algorithms that are more resistant to at-
tack, for operators of recommender systems, who may be able to se-
lect algorithms that are resistant to likely attacks, and for evaluators
of shilling attacks, who may need to be aware their results are algo-
rithm dependent. We suspect there will be differences in shilling re-
sistance among other less similar recommender algorithms as well;
if we find differences between these two algorithms we will recom-
mend future work to understand in detail the shilling resistance of
the entire suite of known recommender algorithms.

Recommender systems in e-commerce, where shilling is most
often feared [5, 14], are used more often to produce recommenda-
tions [19] than predictions. Attacks should be judged based on how
they affect the recommender in its most common mode of operation
– after all, if a user only looks at the top 10 items on a list, does it
matter that the shilling attack has changed the prediction she would
have seen for the 500th item on her list?

HYPOTHESIS 2. Shilling attacks affect recommender algorithms
differently from prediction algorithms.

If this hypothesis is supported, it will mean that researchers who
evaluate attacks must base their measure of the effectiveness of the
attack on the specific ways the targeted recommender system is be-
ing used. Metrics used in the past for evaluating recommender al-
gorithms have all been focused on predictions; perhaps for recom-
mendation tasks recommendation metrics should be used instead.

The fact that past research has shown that shilling is effective in
some cases, raises the question of whether the operators of recom-
mender systems can detect that their systems are under effective
shilling attack. Our next hypothesis is that they cannot do so with
existing tools. Note that this hypothesis is distinct from hypothesis
2 even though both are about metrics. Hypothesis 2 is about mea-
sures that evaluate shilling attacks based on knowing exactly which
items are being attacked, which the operator of the recommender
system will not know.

HYPOTHESIS 3. Shilling attacks are not detectable using tra-
ditional measures of algorithm performance.

ACF algorithm designers often utilize metrics such as Mean Ab-
solute Error (MAE) to evaluate the overall predictive accuracy of
their algorithms and to compare it with other algorithms. Thus, it
may be tempting to use such metrics to detect attacks by looking
for changes in algorithm quality caused by attacks. We believe this
will generally not be possible; that is, attacks can be subtle and
focused enough that their overall effect on the system is minimal.

This hypothesis is unnerving to those who – like us – run a rec-
ommender system, since it means that our systems may already be
under successful attack, and that despite all of the measurement
tools at our disposal we may be unaware of all but the crudest at-
tacks. We seek to spur understanding of which evaluation tech-
niques are best for detecting shilling attacks.

One possible place to look for detecting shilling attacks is to
understand which target items are most vulnerable to them. We
hypothesize that the number of ratings of an item, and the spread
of those ratings over possible ratings values influence the extent to
which an attack can succeed.

HYPOTHESIS 4. Ratings distribution of the target item influ-
ences attack effectiveness.

We will study popularity (number of ratings), likability (average
rating), and entropy as the variables that describe the ratings distri-
bution. We believe that the following statements will be true:

• Likability – the more well-liked an item is (that is, the higher
its average rating is), the easier it is to cause that item to be
recommended more often

• Popularity – the less popular an item is (that is, the fewer the
number of ratings it has), the easier it is to manipulate the
predictions and recommendations for that item

• Entropy – the higher the entropy of an item’s ratings, the eas-
ier it is to manipulate the predictions and recommendations
for that item

1.3 Contributions
This paper builds on the work presented in [14] and further ex-

plores the feasibility and effectiveness of influencing recommender
systems based on ACF algorithms through shill attacks.

First, we propose a set of dimensions that describe and categorize
a wide variety of shill attacks. These dimensions set the stage for

the types of evaluation we carry out, though our evaluation so far is
only of the dimensions we expect to be most important in practice.

Second, we build on past work to develop two basic attack types,
and perform a series of experiments to study their effectiveness in
influencing both the predictions and the recommendations made by
two different ACF algorithms. In our experimental work we simul-
taneously evaluate all three aspects of the shilling attack: the attack
itself, the ACF algorithm under attack, and the different metrics
used to evaluate both the algorithms and the attacks.

Finally, we present the results of the experiments and examine
how they support or refute our hypotheses, and conclude with a
look at some open questions and possible future work.

2. DIMENSIONS OF ATTACKS
In this paper we only consider shill attacks where the attacker’s

available action is to introduce a new set of users and a set of ratings
made by those new users to the recommender system. In the case
of online recommender systems, more traditional attacks such as
denial-of-service, password cracking, system hacking, and bribery
are possible, but are beyond the scope of this paper.

Each shill attack has a number of intrinsic properties that can be
useful in describing and comparing different attacks. A list of these
properties, or dimensions, follows.

2.1 Attack Intent
Different shill attacks may have very different intents. While the

direct result of a shill attack is generally that the predictions made
to users are manipulated in some way, the eventual goal of a shiller
can be one of several alternatives. Two straightforward intents are
to “push” one or more items in the system in order to have them
recommended to more users and, conversely, to “nuke” a set of
items to cause them to be recommended to fewer users.

Another possible intent is to simply damage the recommender
system as a whole; that is, to reduce prediction and recommenda-
tion quality across the board with the goal of causing users to stop
trusting the system and eventually to stop using it. A successful at-
tack of this nature might benefit competing recommender systems.

2.2 Targets
Shill attacks can be directed at a particular subset of users and a

subset of items in a recommender system. It is in an attacker’s best
interest to restrict the effect of an attack to a small target set of items
in order to be more subtle and try to avoid detection by the system
operators. Additionally, it might be beneficial to also restrict the
effect to some desirable set of target users. For instance, it might
induce suspicion to cause a heavy metal album to be recommended
to a connoisseur of classical music who would have absolutely no
interest in such an album.

2.3 Required Knowledge
Attacks may require some level of knowledge about the items,

users, ratings, and algorithms in the recommender system being
attacked. An informed attack will generally be more effective than
an uninformed attack. Further knowledge about the system such
as ratings sparsity, ratings distribution, and algorithm parameters
can help in choosing which attack to employ and in tuning attack
parameters to maximize effectiveness and minimize detectability.

2.4 Cost
A shill attack has an associated cost value that depends on the

level of effort and information needed to successfully execute the
attack. With a cost dimension and a suitable means of evaluat-
ing attack effectiveness, one might be able to evaluate attacks on a

cost/benefit basis to determine if it is economically worthwhile to
execute an attack. The following factors contribute to the cost of a
given attack:

• Size of attack: the number of new users and ratings.

• Difficulty of interacting with the recommender system. For
instance, an attack on a system that employs anti-automation
techniques such as CAPTCHAs may have a far higher cost
than an attack on a system that does not [21].

• Obtaining required knowledge about the algorithm, users,
items, and ratings in the recommender system.

• Any other resources required for attack planning or execu-
tion, such as additional logistical, computational, or techni-
cal requirements.

2.5 Algorithm Dependence
Some shill attacks may be specifically designed to exploit a par-

ticular weakness in a specific algorithm or class of algorithms, while
others might be more general and can be effective against a variety
of algorithms. More specific attacks will intuitively require fewer
resources for the same effectiveness, but require detailed knowl-
edge of the algorithm being used and its parameter settings.

2.6 Detectability
Inherent properties of attacks may make them more or less easily

detectable, both to users and operators of the recommender system.
In general, an attacker would like to be less detectable to operators
in order to be able to sustain the attack for as long as possible be-
fore being discovered and stopped. The importance of detectability
to users depends on the attack intent. This dimension is one that
can evolve very rapidly as shill detection methods are developed or
improved, similar to the current arms race seen in spam (unsolicited
commercial email) detection and detection evasion.

3. EXPERIMENTAL DESIGN

3.1 Our Shill Attack Design
This paper focuses on algorithmic attacks that attempt to push or

nuke an item (that is, raise or lower the recommender’s predictions
for the item) by introducing shills into the system. It is assumed that
the attacker does not have access to the ratings matrix but can ob-
tain broad statistical measures of the ratings data and other publicly
available data. We do not concern ourselves with reducing the cost
of the attacks or with designing attacks that are difficult to detect.
If these brute force attacks prove difficult for operators to detect,
recommender systems operators should be concerned indeed!

We begin with the type of attacks used in [5]. These attacks in-
ject a collection of new users into the system, each of which has
rated a set of items to try to be similar to existing users, and has
rated the particular item being attacked very high in order to push
it. Practical implementations of both user-user and item-item al-
gorithms scale correlations according to the number of ratings in
common [9]. It has been observed that the attack from [5] does not
work well for this variant of the kNN algorithms if too few items
are rated by the shill users because the similarities are scaled down
too far to be considered by the algorithm [14]. We therefore modify
the attack to rate all movies in the system to maximize the number
of items in common between shill users and real users. Attacks like
these are related to filterbots, which also rate all items [8]. How-
ever, filterbots are used to improve recommendation coverage and

quality, while these shills (“shillerbots,” perhaps) will be used to
decrease quality for a small subset of items.

One way in which the ACF algorithms we test are different from
those used in the past [5, 14] is that we do not use negative cor-
relations between items. We made this decision because our past
experience has been that negative correlations often lead to rec-
ommendations that are inconsistent with user preferences. Shills
might exploit negative correlations to produce very strong attacks
– but system operators will likely disable the use of negative corre-
lations to improve quality first.

Our attacks target the entire population of users and a small target
set of items while requiring relatively limited knowledge about the
ratings matrix. The number of new shill users introduced to the
recommender system is varied between 25 and 100. The intent of
these attacks is to either push or nuke the target set of movies. The
two attack methods developed are:

3.1.1 RandomBot
RandomBots are a naive attack in which each introduced user

rates items not in the target set randomly on a normal distribution
with mean 3.6 and standard deviation 1.1. These values are cho-
sen because they represent the ratings distribution in the data set.
Even if these values are not known to the attacker, they can be
estimated relatively easily, perhaps by observing people using the
recommender system and obtaining a sample of their ratings. A
normal distribution is used to approximate the observed user rating
behavior in MovieLens. To accomplish its objective, the filterbot
rates items in the target set with value equal to either the minimum
or maximum allowed rating, depending on its intentions (nuke or
push, respectively).

3.1.2 AverageBot
AverageBots are a somewhat more sophisticated attack than Ran-

domBots and require knowledge of the average rating of each item
in the system. A number of recommender systems, including Movie-
Lens, will readily provide this information. Furthermore, such ag-
gregate information about users’ preferences may be found from
other sources. In the case of movies, the Internet Movie Database
(http://www.imdb.com) publicly displays the average user ratings
of listed movies.

Each introduced user rates items not in the target set randomly
on a normal distribution with mean equal to the average rating of
the item being rated and standard deviation 1.1. The rationale be-
hind this attack is that providing ratings centered around the aver-
age rating will help the filterbot be more similar to existing users,
and thus, have a larger effect on the recommendations. As with
the RandomBot, items in the target set are rated with a minimal or
maximal value depending on the intent.

3.2 Data Set
A data set derived from MovieLens consisting of 999,799 ratings

on 3,404 movies by 7,463 users is used in all experiments in this
paper. All ratings are integral values between 1 and 5, inclusive,
where 1 represents a poor movie and 5 represents an excellent one.

3.3 ACF Algorithms
We experimented with two commonly-used ACF algorithms –

kNN user-user and kNN item-item.

3.3.1 kNN User-User
The classic kNN user-user algorithm introduced by Resnick in

[16] is chosen because it is considered to be a good baseline algo-
rithm and is widely used in both academia and industry.

The user-user algorithm uses the following formula to compute
a predicted rating p for a user u on an item i.

pu,i = ru +
∑v∈Uu,i

[wu,v(rv,i − rv)]

∑v∈Uu,i
|wu,v|

Here, ru is user u’s average rating over all rated items, wu,v is
the mean-adjusted Pearson correlation (“similarity”) between users
u and v, and Uu,i is user u’s neighborhood with respect to item i
and consists of the k users who have rated i and have the greatest
Pearson correlation with u. k is a tunable parameter and represents
the number of neighbors.

Several optimizations and suggested parameters from [9] are used.
In particular, we set k to 20 and use the n/50 significance weighting
and deviation from mean optimizations. A similarity threshold of
0.1 is also used. The only difference between the user-user variant
used in this paper and the published algorithm is that only positive
similarities are considered here; negative similarities and ones un-
der the threshold are ignored. This variant was also used for several
years in the MovieLens recommender system and does not appear
to be detrimental to performance.

3.3.2 kNN Item-Item
The kNN item-item algorithm was introduced by Sarwar et al.

[18] and is similar to user-user in both definition and predictive
accuracy. However, it computes and uses similarities between items
rather than users. We choose to experiment with this algorithm in
order to explore how well an attack that is effective against user-
user operates with a somewhat-different algorithm. The formula
used to compute a prediction in item-item is:

pu,i =
∑ j∈allsimilaritems[si, j ∗ ru, j]

∑ j∈allsimilaritems |si, j|

Here, si, j is the similarity between items i and j. The algorithm
implementation used in this paper is the MultiLens recommender
engine developed by Brad Miller [12], which uses the adjusted co-
sine method of computing similarity, and considers the 20 rated
items with highest similarity to be the set of “all similar items”
(again, ignoring negative similarities). A tuned version of this al-
gorithm is currently utilized in MovieLens.

3.4 Methods
A total of twenty-four experiments were performed in a 2x2x2x3

design. The algorithm (user-user or item-item), attack type (Aver-
ageBot or RandomBot), attack intent (nuke or push), and number
of new users/bots (25, 50, or 100) were varied in each experiment.

The target set for the experiments consists of 22 items. This
set was selected to include a variety of different movie types in-
cluding future releases, new releases, obscure films, popular films,
controversial films, and long-standing favorites. In terms of ratings
properties, this selection of items represents a wide range of pop-
ularity (number of ratings), entropy (a measure of the variance of
ratings), and likability (mean rating). Table 1 displays the proper-
ties of items in the target set.

3.5 Metrics
There are two things that we would like to be able to measure:

1. How much the overall accuracy of the ACF algorithm is af-
fected by an attack.

2. How effective an attack is in accomplishing its goal.

Table 1: Properties of movies in chosen target set. Ratings is
total number of ratings (popularity), mean is average rating
(likability), and entropy is the standard information-theoretic
entropy of the ratings distribution. Recall that ratings are pro-
vided on a 5-point scale.

Item Ratings Mean Entropy
1 0 N/A N/A
2 7 2.57 0.99
3 8 2.88 1.56
4 17 3.00 2.04
5 17 3.24 1.61
6 18 2.11 1.99
7 27 3.15 2.21
8 34 4.00 1.53
9 46 1.78 1.67

10 48 2.60 2.18
11 92 3.17 2.15
12 105 1.72 1.65
13 106 2.71 2.12
14 116 4.12 1.59
15 234 2.44 2.17
16 263 1.89 1.82
17 354 4.28 1.60
18 422 3.20 2.26
19 1298 3.78 1.68
20 1828 4.49 1.39
21 2316 3.35 2.18
22 2654 3.74 2.08

We consider many metrics here. The first time we introduce a
metric, the name will be in bold face.

To address the first requirement, we turn to a metric commonly
used to evaluate ACF algorithms, Mean Absolute Error, or MAE.
This is simply the average absolute difference between the pre-
dicted rating and actual rating over all users and items in a test
set. The algorithm performance is evaluated before and after each
attempted attack to determine each attack’s effect on the system as
a whole.

While MAE is generally considered to be a standard in evalua-
tion of ACF algorithms, we find that there is a mismatch between
what it measures and what really matters to users in a recommender
system. Recommender systems are a decision support tool, and in
general, the exact predicted value is of far less importance to a user
than the fact that an item is recommended.

In practice many recommender systems are used by e-commerce
sites to help their customers find products to purchase. One might
expect that many of these systems produce lists of recommenda-
tions for their users, rather than interfaces that require the user to
explicitly seek out the products that she desires. In fact, Schafer
et al. found that by far the most common output of e-commerce
recommender engines was suggestions of items for the customers
to purchase [19]. Therefore, the quality of the recommendations
should be emphasized rather than the quality of the predictions.

Furthermore, since users do not tend dig very “deeply” when
shown a list of things to examine, only the items near the top of
a recommendation list should be considered when evaluating al-
gorithm quality. We analyzed MovieLens user behavior from the
search logs, and discovered that the median recommendation search
ends within the first 40 items displayed. Figures 1 and 2 show
the browse depth of 137,991 MovieLens recommendation (top-N)

Figure 1: Log-log graph of top-N search browse depths in
MovieLens. The median search depth is 40, and 79% of rec-
ommendation searches end at or before 80 items.

Figure 2: Partial graph of top-N search browse depths in
MovieLens. The long tail to the right of 400 items is not shown.

searches. Figure 2 is truncated at 400 items so that the low me-
dian is easier to visualize. Figure 1 shows the entire set of data
on a log-log scale so that the long tail is visible. The phenomenon
that users do not dig deeply through a list of results may be even
more acute in other domains. For instance, one study found that 54
percent of users view only a single page of search results in each
session [10]. Developing a top-N recommendation accuracy metric
for entire recommender systems is beyond the scope of this paper;
however, we will develop an attack effectiveness metric that is cen-
tered around recommendations rather than predictions.

Before we do so, we first examine the attack effectiveness met-
rics used in previous work. One metric that is introduced in [14]
is the Stability of Prediction metric, which measures the relative
number of predictions for target items that are not manipulated be-
yond some given threshold. This metric does not directly address
the notion of manipulating top-N recommendation lists. It treats all
prediction manipulations of equal amount as being of equal impor-
tance. However, this is intuitively not the case – for instance, on a
5-point rating scale, causing a prediction to change from 2 to 3 is far
less meaningful than moving it from 4 to 5. An item with a 3-point
prediction is usually far less likely to appear on a recommendation
list than an item with a 5-point prediction.

Another metric also introduced in [14] is the Power of Attack
metric, which is defined as the average change in prediction toward
some target value (usually the minimum allowed rating rmin or the
maximum allowed rating rmax) over all target users and items. We
believe that this has the same drawbacks as the Stability of Predic-

tion metric. Since Power of Attack is defined differently in earlier
work [15] by the same authors, we will refer to this metric as Pre-
diction Shift when presenting our results.

We will use the version of the metric defined in [15] when re-
ferring to Power of Attack. This is the percentage of predictions
for target items not manipulated to some target value (again, rmin
or rmax). For attacks with a push intent, we find that this metric is
somewhat useful for gauging impact on recommendation lists for
attacks with a push intent, even though it is a prediction-based met-
ric. An item that has its predicted rating manipulated to rmax is
indeed likely to appear in a top-N list.

However, this metric falls short in a number of ways. First, the
metric is less suitable for measuring the effectiveness of attacks
with a nuke intent. In the vast majority of cases, it is unnecessary to
manipulate a prediction to rmin to cause it to not appear in a top-N.
Secondly, some algorithms are extremely conservative in making
predictions of rmax. This metric is less able to accurately gauge
attack performance in this case, as the values the metric takes will
be universally high (remember: high values mean most items not
successfully manipulated). Conversely, some algorithms may be
fairly liberal in producing predictions of rmax. This metric does not
take into account the possibility that more than N items can have a
predicted rating of rmax – in such cases, the top-N recommendation
list is not well-defined and the method used to break such “ties” to
determine which N items to display is implementation-dependent.

So, we are left with a need to define a metric that directly mea-
sures the effect of an attack on top-N recommendation lists. Fur-
thermore, the metric should take into account the possibility of
items tied for inclusion in these lists. Based on these require-
ments, we propose a metric called Expected Top-N Occupancy
(ExpTopN). The metric is defined as the expected number of oc-
currences of target items in a top-N recommendation list, measured
over all users, assuming that the displayed ordering of items tied at
any particular rank is random. We believe that in the absence of any
information about the algorithm implementation, the metric should
treat all possible tiebreaker functions equally, which has the bene-
ficial side effect of leading to a metric that gives a lower value for
attacks that result in many ties involving target items.

For example, let the target items be items E and F , and suppose
that the candidates for inclusion in a top-5 recommendation list for
some user are as shown below.

Rank Item Pred
1 B 5.0
2 E 4.9
3 D 4.7
4 A 4.5
4 C 4.5
4 F 4.5

In this case, there are three items tied for the fourth and fifth
entry in the top-5 list. One of these three items is in the target set.
Assuming all orderings of these three items are equally likely, the
Expected Top-5 Occupancy for this user is 1.666. The target item
E in the top-5 contributes 1, and item F being in two out of the
three permutations for the fourth and fifth items displayed on the
list contributes 0.666.

By examining the change in this metric caused by some attack,
one can determine the attack’s effect as perceived by users of the
recommender system. To reflect actual MovieLens usage, we will
use N = 40 in accordance with our system usage analysis. To com-
pare this metric with the prediction-centric ones, we will report
MAE as well as the value of both Power of Attack metrics. The

Table 2: Effect of attacks as measured by the Prediction Shift
metric (PredShift) and the change in MAE (∆MAE). An in-
crease in MAE indicates lower overall predictive accuracy.

Algorithm Intent Attack Bots PredShift ∆MAE

User-user

Push

Random
25 0.499 0.002
50 0.671 0.004
100 0.830 0.009

Average
25 1.032 0.006
50 1.189 0.011
100 1.300 0.019

Nuke

Random
25 0.422 0.002
50 0.589 0.004
100 0.759 0.010

Average
25 0.656 0.007
50 0.815 0.014
100 0.956 0.023

Item-item

Push

Random
25 0.030 0.002
50 0.053 0.002
100 0.069 0.004

Average
25 0.363 0.002
50 0.426 0.004
100 0.471 0.010

Nuke

Random
25 -0.046 0.002
50 -0.069 0.002
100 -0.092 0.004

Average
25 0.332 0.003
50 0.354 0.006
100 0.361 0.014

earlier definition from [15] will be referred to as Power of Attack
(POA) and the later definition from [14] will be referred to as Pre-
diction Shift (PredShift).

4. RESULTS AND DISCUSSION
The discussion of results is organized according to the hypothe-

ses they relate to.

HYPOTHESIS 1. Different ACF algorithms respond differently
to shilling attacks.

Table 2 shows how each of the attacks affected the predictions
made by the ACF algorithms. This table reports the two prediction-
centric metrics, PredShift and change in MAE. These metrics are
most appropriate for applications that form predictions for items
selected by the user. First, we examine the attack effect as measured
by the prediction shift metric. We delay discussion of MAE until
the presentation of the hypothesis about detecting shilling, because
we found MAE not very useful for the other hypotheses. In general
the MAE changes were very small, and seem unlikely to represent
noticeable change to users.

The user-user algorithm responds very strongly to all attacks;
that is, the attacks are successful to some extent in manipulating
the predictions for items in the target set. For the push attacks, the
PredShift metric indicates that AverageBot-based attacks are able
to raise the predictions by over one point, and RandomBot-based
attacks are somewhat less effective. A similar pattern is seen for
the nuke attack.

On the other hand, the item-item algorithm responds far less
strongly. According to PredShift, the most effective push attack
on item-item (100 AverageBots) has an effect on predictions that is

Table 3: Effect of attacks as measured by the Power of Attack
metric (POA) and percent change in Expected Top-40 Occu-
pancy (ExpTop40). For POA, a lower value means the attack
was more effective. The value of Expected Top-40 Occupancy
pre-attack is 0.57 for the user-user algorithm and 0.24 for item-
item.

Algorithm Intent Attack Bots POA ExpTop40

User-user

Push

Random
25 0.900 711%
50 0.865 1190%
100 0.816 1649%

Average
25 0.715 1286%
50 0.609 1674%
100 0.519 1918%

Nuke

Random
25 0.943 -39%
50 0.928 -33%
100 0.908 -32%

Average
25 0.963 -67%
50 0.952 -70%
100 0.943 -75%

Item-item

Push

Random
25 1.000 150%
50 1.000 171%
100 1.000 229%

Average
25 0.999 158%
50 0.999 154%
100 0.999 117%

Nuke

Random
25 0.954 146%
50 0.954 204%
100 0.954 333%

Average
25 0.955 -33%
50 0.955 -54%
100 0.954 -71%

comparable to the least effective push attack on user-user (25 Ran-
domBots). RandomBots have an even weaker effect on item-item
predictions – no average prediction shift is greater than one-tenth
of a point.5

Next, we turn to Table 3, which shows the results of the attacks
in terms of metrics that measure their ability to affect recommen-
dations. These metrics are more appropriate for applications that
generate lists of suggested items for their users.

According to the POA metric, push attacks on the user-user al-
gorithm are more successful than nuke attacks, with AverageBot
being superior to RandomBot. In the MovieLens domain push at-
tacks may be easier because the average rating is higher than the
midpoint of the scale. With the item-item algorithm, push attacks
seem ineffective – the values of 1 and 0.999 indicate that essen-
tially no predictions for items in the target set were successfully
manipulated to the target predicted value of rmax, or 5. Nuke at-
tacks on item-item are roughly as effective as they are on user-user,
according to POA.

The ExpTop40 metric should be sensitive to prediction changes
that influence the top 40 items, whether or not those changes move
the predictions to the top of the scale. With this metric, we see a
striking difference in response between the two algorithms. The

5Note that using RandomBots in a nuke attack actually increases
predictions for the item slightly. We are unsure why this happens,
though we have been able to show in small-scale examples that at-
tacks on one user in item-item sometimes result in a reverse effect
for other users. That is, if an item is pushed for some users, that
item is nuked for other users. Perhaps the increase is due to a re-
versal on a subset of users.

user-user algorithm is profoundly affected by push attacks, with
AverageBot again being more successful than RandomBot. Note
that a 100-AverageBot attack causes a nineteen-fold increase in
how often the target items are recommended in the top-40!

Clearly, the push attacks have a far more subdued effect on the
item-item algorithm according to ExpTop40. In the strongest case,
ExpTop40 increases by 229% with a 100-RandomBot push attack.
Unexpectedly, we see that a 100-RandomBot nuke attack has an
even greater effect, causing target items to be recommended over
three times as often! So, while there is a large effect on item-item
recommendations in a relative sense, it may not be considered sub-
stantive enough to be worthwhile for an attacker. Even after the
strongest attack, less than one occurrence of a target item appears
in each user’s top-40 on average.

Looking at the nuke attacks, we see that the AverageBot-based
attacks are successful on both ACF algorithms in manipulating the
top-40. With 100 AverageBots, the number of items from the target
set appearing in a user’s top-40 is reduced by about 75% on the
user-user algorithm and 71% on the item-item algorithm.

So, we find that the user-user and item-item algorithms do re-
spond differently, particularly in how their recommendations are af-
fected under push attacks. We judge that the evidence supports the
hypothesis that different algorithms respond differently to shilling
attacks. Algorithms that are less similar than user-user and item-
item may react even more differently.

HYPOTHESIS 2. Shilling attacks affect recommender algorithms
differently from prediction algorithms.

To address this hypothesis, we compare the values of the Pred-
Shift, POA, and ExpTop40 metrics. PredShift and POA are pre-
diction metrics, while ExpTop40 is a recommendation metric. For
many of the tests both classes of metrics move in the same direc-
tion. For instance, under a AverageBot-based push attack on user-
user, PredShift is at least a half point, POA shows that at least thirty
percent of predictions were successfully manipulated to rmax, and
the change in ExpTop40 shows that many target items are pushed
into the top 40.

However, there are notable differences, too. For instance, The
PredShift metric indicates that RandomBot-based push attacks have
a nearly negligible effect on item-item’s predictions for target items.
The ExpTop40 metric, on the other hand, says that up to twice as
many target items are in the top 40 after this attack.

Conversely, with Average-bot based push attacks on item-item,
PredShift shows that there is an measurable effect on the predic-
tions, but the effect on recommendations as measured by ExpTop40
are minimal. Thus, this attack does appear to have different effects
on the prediction and recommendation modes of item-item.

Note that in a few cases, the POA metric shows diametrically op-
posed results in comparison with the other metrics. In the Random-
Bot nuke attacks on item-item, PredShift and ExpTop40 show that
the predictions and recommendation frequencies for target items in-
creased, while POA indicates some success in reducing predicted
values for target items to rmin, or 1. In fact, POA indicates just as
much success for this attack as it does for the AverageBot nuke at-
tack on item-item, which PredShift and ExpTop40 agree actually
does nuke the target items. POA is unable to distinguish between
AverageBot and RandomBot attacks on item-item even though each
attack has different effects on the predictions and recommendations
according to the other metrics.

The high values POA takes for attacks on the item-item algo-
rithm is a result of one of the weaknesses we mentioned earlier. We
have observed in previous experiments that item-item tends to be
more conservative than user-user in giving very high or very low

predictions. Thus, it is difficult to manipulate a prediction to ei-
ther extreme of the scale, and as a result, the POA metric gives
deceptively high values for item-item. Because of this deficiency,
we recommend against using POA as the sole metric for evaluating
shilling attack performance.

Overall, the evidence for this hypothesis is mixed. Usually, all of
the metrics we studied move in the same direction, and it is hard to
directly compare them. However, in a few cases there are clear dif-
ferences between an attack’s impact on predictions and on recom-
mendations. We believe these cases are sufficient evidence to argue
that selection of an appropriate metric is important. If recommen-
dation is more important than prediction for the recommender sys-
tem, then a recommendation-based metric such as Expected Top-
N Occupancy should be used. On the other hand, if prediction is
more important, a prediction-based metric such as Prediction Shift
should be used.

HYPOTHESIS 3. Shilling attacks are not detectable using tra-
ditional measures of algorithm performance.

We return to Table 2 where the last column shows the change in
MAE caused by each attack. The MAEs are obtained by perform-
ing five-fold cross-validation on a 80%/20% test/train split of the
data set before and after each attack. Note that no attack increases
the mean absolute error by more than 0.023, and that RandomBot
attacks on item-item induce extremely small reductions in accu-
racy. These changes seem small, but some of them are comparable
to the improvements in MAE that are often considered “significant”
differences between algorithms [9].

As an aside, it is unclear whether people are able to perceive such
differences in system accuracy. Cosley et al. [4] show that users are
able to detect intentionally-produced shifts of one point on many
items in a small set of predictions, but the average change in error
here is over 40 times smaller and is distributed across a large set
of items. Furthermore, the system’s user interface may not make
small changes in prediction evident – for instance, MovieLens only
displays predictions in half-point increments. Of course, whether
users can detect changes in MAE is not directly related to whether
MAE can be used by system operators to detect shills.

Overall, we find that insufficient evidence exists to support or
reject this hypothesis. Some less naive attacks may fall “under the
radar,” but others may be detectable by watching standard metrics
such as MAE. Still, we believe that this ambiguity suggests that
other ACF algorithm performance metrics are necessary to reliably
detect attacks.

HYPOTHESIS 4. Ratings distribution of the target item influ-
ences attack effectiveness.

We hypothesized that the properties of an item’s ratings distribu-
tion has an effect on how much impact an attack has on that item.
Recall that the properties mentioned earlier were popularity, lika-
bility, and entropy. Intuitively, if an item has few ratings (low pop-
ularity) and/or has a high spread of ratings (entropy), it should be
easier to manipulate the predictions and recommendations for that
item because it is more “volatile” in some sense. Likewise, items
that are already well-liked should be easy to push, while items that
are disliked by many should be easy to nuke.

We examined the effects of these variables on PredShift and Ex-
pTop40. We only considered push attacks for ExpTop40, since so
few of our target items were in top 40 lists prior to the attacks, so
nuke attacks would have few items to “nuke.”

Figures 3, 4, and 5 show several examples of these relationships
(or lack thereof). The likability of an item correlates with PredShift

Figure 3: Relationship between popularity of an item and the
effect of a 100-AverageBot push attack on user-user recommen-
dations (r2 = 0.874)

Figure 4: Relationship between likability of an item and the
effect of a 100-AverageBot push attack on item-item predictions
(r2 = 0.853)

Figure 5: (Lack of) Relationship between entropy of an item
and the effect of a 100-AverageBot push attack on item-item
recommendations (r2 = 0.004)

on both the user-user and item-item algorithms, but not with the
change in ExpTop40 in either algorithm. The popularity of an item
correlates highly with the change in ExpTop40 on user-user, but
not on item-item. Furthermore, popularity does not correlate well
with PredShift. Finally, the entropy of an item’s ratings distribution
correlates with neither metric and neither algorithm.

So, while a portion of this hypothesis is rejected, the supported
part of the hypothesis does carry an important implication for sys-

tems that use the user-user algorithm for recommendations. Items
that have low popularity can be an easy push target for attackers.
This result is significant because new items initially simultaneously
have low popularity, and are highly desirable to push, since new
items often sell at a premium.6

Note that these results also provide further support for our first
hypothesis that different ACF algorithms respond differently to at-
tacks.

5. CONCLUSIONS AND FUTURE WORK
Overall, our results are mixed. However, there are some conclu-

sions that can be drawn for operators of recommender systems who
would like to reduce the threat of shilling to their systems. We first
identify those lessons, then discuss what all of the shilling studies
to date together say about the dimensions of shilling, and close by
suggesting some rich areas for future work.

Prefer Item-Item. The item-item algorithm was much less af-
fected by the attacks in our study than was the user-user algorithm.
In many domains, item-item provides recommendations that are the
same or better quality as user-user, and the same or better perfor-
mance. Our study suggests one more reason for operators to prefer
item-item: it appears to be more resistant to shilling.

One internal reviewer of our paper suggested that the reason
user-user is easier to attack is that the version we used has a neigh-
borhood size of only 20. The argument is that the small neighbor-
hood makes it easy for shills to displace “good” neighbors. To test
this hypothesis we repeated some of our experiments with a neigh-
borhood size of 500. We found only very small differences – and
the larger neighborhood proved overall easier to shill!

Use Recommendation Metrics. Most recommender systems in
practice are used as a source of recommendations, rather than pre-
dictions [19]. Our results show that metrics that are sensitive to
changes in prediction accuracy may be less sensitive to changes
in recommendation accuracy. We recommend that operators who
are producing mostly recommendations use a recommendations-
centric metric, such as Expected Top-N Occupancy, to evaluate the
effectiveness of shilling attacks on their systems. We also recom-
mend that researchers consider focusing on recommendation accu-
racy, rather than prediction accuracy, in future shilling studies.

Watch Metrics, but Worry Anyway. Operators wish to know
whether their recommendations systems are under attack. Watch-
ing for sharp changes in the value of traditional algorithm perfor-
mance metrics such as MAE may be useful for detecting some at-
tacks. However, our results suggest that many effective attacks will
not be visible through simple aggregate metrics like MAE, so work
needs to be done to develop more reliable tools to detect attackers.
Note that the attacks we used in this paper could be easily detected
by watching for individual users with unreasonably large numbers
of ratings. Real-world attacks are likely to be more subtle.

Protect New Items. Our experiments show that new or obscure
items, particularly in the user-user algorithm, are especially sus-
ceptible to attack. Recommender system operators should consider
obtaining ratings for such items from a trusted source in order to
make them less vulnerable. For instance, the ratings for a new item
could be seeded with ratings from professional critics, with ratings
from trusted volunteers, or with filterbots [8].

The research that has been done on shilling in recommender sys-
tems, including the present paper, considers attacks that are in a
6In fact, part of the motivation for this study is a long-term Movie-
Lens user who is convinced that new movies are frequently shilled.
Inspired by his suspicions, we looked hard for ratings behavior that
looks like shilling. We have been unable to find evidence of shilling
of new items in MovieLens to date.

fairly narrow region of the space of attacks spanned by our dimen-
sions from Section 2. Here we consider which parts of that space
has been covered, and suggest how future studies might cover other
areas. We consider each of the dimensions for Section 2 in turn.

Along the intent dimension, only basic push and nuke attacks
have been examined. One can imagine a world in the not-too-
distant future where competing retailers, all operating recommender
systems, may deliberately try to sabotage each other’s systems in
an attempt to frustrate and lure away customers. Attacks that ac-
complish this goal will likely be quite different from the attacks
that have been proposed and tested thus far.

Along the targets dimension, the known attacks tend to target
broad groups of users (in our case, all users). Our work suggests
that this may be difficult under some algorithms such as item-item.
We hypothesize that targeted attacks will be more effective, easier
to formulate, and harder to detect.

Most attacks described to date assume a limited amount of knowl-
edge about the recommender system. They are primarily targeted
against algorithms like kNN user-user or its kin. They have little
cost/benefit analysis beyond basic attack size, and have not been
analyzed for detectability.

Besides formulation of additional classes of attacks, many other
open questions remain in this area. Are there highly-robust ACF
algorithms that are resistant to most attacks? Why are some at-
tacks better against certain algorithms? Are there reliable ways of
detecting attacks? What can system operators do if their system
is attacked? Can users of recommender systems do anything to
prevent or detect shilling attacks? These questions are becoming
increasingly important as recommender systems become more and
more commonplace in commercial applications.

6. ACKNOWLEDGMENTS
We gratefully thank the members of the GroupLens Research

Project for many interesting and inspiring discussions while we car-
ried out this work. We especially acknowledge Brad Miller for the
MultiLens system, which we used for many of the experiments. We
also appreciate the feedback from Dan Frankowski, Sean McNee,
and Al Mamunur Rashid on early drafts of this document. This
work was supported by grants from the NSF (DGE 95-54517, IIS
96-13960, IIS 97-34442, IIS 99-78717, and IIS 01-02229)

7. REFERENCES
[1] S. E. Asch. Effects of group pressure upon the modification

and distortion of judgements. Groups, Leadership, and Men,
pages 177–190, 1951.

[2] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative filtering.
In Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence (UAI-98), pages 43–52, July 1998.

[3] J. Canny. Collaborative filtering with privacy via factor
analysis. In IEEE Conference on Security and Privacy, May
2002.

[4] D. Cosley, S. K. Lam, I. Albert, J. Kosntan, and J. Riedl. Is
seeing believing? How recommender system interfaces
affect users’ opinions. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems, 2003.
CHI Letters 5(1).

[5] C. Dellarocas. Immunizing online reputation reporting
systems against unfair ratings and discriminatory behavior.
In ACM Conference on Electronic Commerce, pages
150–157, 2000.

[6] D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using
collaborative filtering to weave an information tapestry.
Communications of the ACM, 35(12):61–70, 1992.

[7] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering algorithm.
Information Retrieval, 4(2):133–151, 2001.

[8] N. Good, B. Schafer, J. Konstan, A. Borchers, B. Sarwar,
J. Herlocker, and J. Riedl. Combining collaborative filtering
with personal agents for better recommendations. In
Proceedings of the 1999 Conference of the American
Association of Artificial Intelligence (AAAI-99), July 1999.

[9] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering.
In Proceedings of the 1999 Conference on Research and
Development in Information Retrieval (SIGIR-99), Aug.
1999.

[10] B. J. Jansen and A. Spink. An analysis of web documents
retrieved and viewed. In Internet Computing Conference, Las
Vegas, 2003.

[11] B. Miller, J. Riedl, and J. Konstan. GroupLens for Usenet:
Experiences in applying collaborative filtering to a social
information system. In C. Leug and D. Fisher, editors, From
Usenet to CoWebs: Interacting with Social Information
Spaces. Springer-Verlag, 2002.

[12] B. N. Miller. Toward a Personal Recommender System. PhD
thesis, University of Minnesota, 2002.

[13] C. Nass and Y. Moon. Machines and mindlessness: Social
responses to computers. Journal of Social Issues, pages
81–103, 2000.

[14] M. P. O’Mahony, N. Hurley, N. Kushmerick, and
G. Silvestre. Collaborative recommendation: A robustness
analysis. ACM Transactions on Internet Technology, 2003.
Special Issue on Machine Learning for the Internet.

[15] M. P. O’Mahony, N. J. Hurley, and G. C. Silvestre.
Promoting recommendations: An attack on collaborative
filtering. In Proceedings of the 13th International
Conference on Database and Expert Systems Applications,
pages 494–503. Springer Verlag, 2002.

[16] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and
J. Riedl. GroupLens: An open architecture for collaborative
filtering of netnews. In Proceedings of CSCW 1994. ACM
SIG Computer Supported Cooperative Work, 1994.

[17] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl.
Application of dimensionality reduction in recommender
system – a case study. In ACM WebKDD 2000 Web Mining
for E-Commerce Workshop, 2000.

[18] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th International World
Wide Web Conference (WWW10), Hong Kong, May 2001.

[19] J. Schafer, J. Konstan, and J. Riedl. Electronic commerce
recommender applications. Data Mining and Knowledge
Discovery, Jan. 2001.

[20] U. Shardanand and P. Maes. Social information filtering:
Algorithms for automating ‘word of mouth’. In Proceedings
of the ACM SIGCHI Conference on Human Factors in
Computing Systems, pages 210–217, 1995.

[21] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. In
Proceedings of Eurocrypt, 2003, 2003.

