
Matching GPS Traces to (Possibly) Incomplete Map Data:
Bridging Map Building and Map Matching

Fernando Torre, David Pitchford, Phil Brown, Loren Terveen
GroupLens Research

Department of Computer Science and Engineering
University of Minnesota

Minneapolis, Minnesota, USA
{torre,pitch,brown,terveen}@cs.umn.edu

ABSTRACT

Analysis of geographic data often requires matching GPS
traces to road segments. Unfortunately, map data is of-
ten incomplete, resulting in failed or incorrect matches. In
this paper, we extend an HMM map-matching algorithm to
handle missing blocks. We test our algorithm using map
data from the Cyclopath geowiki and GPS traces from Cy-
clopath’s mobile app. Even for conservative cutoff distances,
our algorithm found a significant amount of missing data per
set of GPS traces. We tested the algorithm for accuracy by
removing existing blocks from our map dataset. As the cut-
off distance was lowered, false negatives were decreased from
34% to 16% as false positives increased from 5% to 10%. Al-
though the algorithm degrades with increasing amounts of
missing data, our results show that our extensions have the
potential to improve both map matches and map data.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Geometrical problems and computations; H.2.8 [Database
Management]: Spatial databases and GIS

General Terms

Algorithms

Keywords

map matching, map building, GPS, geowikis

1. INTRODUCTION
As GPS-equipped devices become more common, larger

amounts of GPS data become available to geographic appli-
cations. An important challenge and opportunity for these
applications is to make sense of all of this new geographic in-
formation. Integrating GPS data into these applications can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach, CA,
USA
Copyright (c) 2012 ACM ISBN 978-1-4503-1691-0/12/11 ...$15.00.

enhance understanding not only of the map and its struc-
ture, such as road networks, but also of users, such as their
behavior and familiarity with different parts of the map.

One useful technique to help make sense of GPS data is
map matching. Map matching consists of finding a corre-
sponding block in a road network for a GPS observation.
This lets us situate and analyze GPS data in the context
of a road network. Researchers have used this technique to
help them study characteristics of a map, such as traffic data
[9] (how many vehicles travel through a specific block?), and
characteristics of the users, such as route choice models [4]
(which blocks do users prefer to travel through?).

Unfortunately, maps are often incomplete. Roads get built
and removed. Maps designed for one purpose, frequently
driving, may not contain information about shortcuts, side-
walks, bike trails, and alleyways that are crucial for other
purposes, such as bicyling or walking. And many times, map
data has simply not been gathered yet, as is often the case
with VGI (Volunteered Geographic Information) in maps
such as OpenStreetMap [3]. If we simply try to map every
observation to existing blocks, we can end up with many
incorrectly matched blocks or with observations that do not
correspond to any block. In order to overcome the limits of
matching to incomplete data, we need to be able to account
for missing blocks.

In this paper, we present extensions to an HHM-based al-
gorithm for matching traces to maps. Our algorithm is able
to detect missing blocks and add them as necessary. First,
we discuss work related to map matching and map build-
ing. Then we explain our map matching algorithm and the
extensions for detecting missing blocks. Finally, we discuss
the results of testing our algorithm with our GPS and map
data, the implications of our findings, and possible avenues
for future work.

2. RELATED WORK
There is a great variety of existing map matching algo-

rithms, using geometric, topological, probabilistic, and even
more advanced approaches [7]. A recently popular technique
for map matching has been using Hidden Markov Model
(HMM) algorithms [5]. These algorithms have been shown
to be robust even in the absence of high-precision GPS data,
which is often the case with handheld devices. This tech-
nique treats blocks as states with transition probabilities
between each other and maps the sequence of GPS traces to
the most probable sequence of HMM states. As described

546

Figure 1: An example of an HMM process. Nodes
represent blocks in the road network. Edges rep-
resent whether it is possible to travel from the a
node’s block to another node’s block (that is, the
two blocks are connected by an intersection). tij

represents the probability of a transition from bi to
bj , and u represents the probability of backtracking.

in Hummel’s work, this approach also inherently provides
means for detecting u-turns and erroneous map topology.
Although others have expanded on this algorithm [6, 9],
these implementations fail to address the problem of detect-
ing missing map data.

There exist many algorithms to build road networks from
GPS traces, including [8] and [2]. These algorithms are
able to produce precise information (such as lanes and inter-
sections) from high-precision GPS data. Some require the
whole set of GPS traces and others are able to build the map
incrementally as more GPS data is added [1].

These algorithms have two significant limitations. First,
sufficient amounts of high-precision GPS data are not always
easy to obtain, such as in our case, where GPS data was
obtained from users voluntarily using their mobile devices.
Second, these algorithms do not work in the context of road
network data. Even the incremental approaches have to
build on previously obtained GPS data.

3. MAP-MATCHING USING HMM
Our map-matching algorithm builds on the approach used

by Thiagarajan [9], which uses HMM (see Figure 1) to model
blocks as hidden states that produce visible observations
(GPS traces). In an HMM process, we know: 1) what the re-
sulting observations are, 2) the probability of a state produc-
ing a certain observation (emission probability), and 3) the
probability of a state transitioning to another state (transi-
tion probability). The goal is to find the most likely set of
states that could have resulted in a given set of observations.

We model the emission probability for a given block and
GPS observation as a normal distribution based on the dis-
tance from the observation to the block. In our tests we use
a standard deviation of 10m. We set the probability of tran-
sitioning to a connected block or staying on the same block
to 1/(dmax+1), where dmax is the maximum out-degree of
the transportation graph. For a more detailed description
of these settings, refer to Thiagarajan’s paper.

In addition, we allow U-turns by multiplying the tran-
sition probability by a backtracking probability for blocks
which we just transitioned from. This is denoted in Fig-
ure 1 by u. The bigger the backtracking probability, the
higher the possibility that the algorithm will consider that

the user backtracked. To avoid accidental matches to incor-
rect nearby blocks, we keep this probability at an extremely
low value (currently 1E-20).

Before running our matching algorithm, we pre-process
the GPS tracks to remove outliers (observations that would
suggest that the user is traveling unrealistically fast). We
also discard tracks with less than 10 observations or that
do not cover a long enough distance. Once pre-processing
is done, we use the Viterbi decoding algorithm to find the
sequence of blocks with the highest probability of producing
the given observations [10].

4. FINDINGMISSING BLOCKS
Extending the algorithm in the previous section to handle

missing blocks means starting with an incomplete HMM and
extending it as we go. We need to detect when a new state
(block) is required to better fit the given observations. In
essence, this is a hybrid between map-maptching and map-
building: match when possible, build when needed.

Our approach is straightforward: if there are no blocks
that we can transition to, add a new block. There are two
cases in which this happens: (1) all blocks have an emission
probability of 0 for a given observation (there are no blocks
within a cutoff distance d) or (2) all blocks with an emission
probability higher than 0 have transition probabilities of 0
(nearby blocks are not connected to the available paths).

The original Viterbi algorithm goes through the sequence
of GPS observations and for each step calculates the pos-
sible paths that could have created the observations up to
that point. With our extensions, at each step, if any of the
conditions for creating a new block are met, the following
actions also take place:

1. We start with the current GPS observation and move
backwards in the sequence of observations until we reach
either the first observation in the sequence or the observation
that was last seen within s of a block in the matched path,
where s is the standard deviation for GPS error.

2. We move forward until we reach an observation that
is within s of any block. We now have the start and end
observations of the new block to be created.

3. We create a block geometry using the GPS observations
selected in the previous steps.

4. We connect the new block to nearby blocks to ensure
that transitions will be possible between them.

5. We simplify the block geometry to reduce noise.
6. Because the presence of a new block could have affected

the emission and transition probabilities of nearby blocks,
we rewind the algorithm to the first observation where the
new block or any blocks connected to it (which might have
been split) had any emission probabilities.

7. We continue the matching algorithm as usual, until the
next time we encounter the need for adding a new block.

Figure 2(a) shows an example of an area where a GPS
track was recorded. A section of the track is shown in Fig-
ure 2(b). This is an example of a case where the user back-
tracks and also veers off the existing blocks in the dataset.

Without creating new blocks, even if our algorithm can
handle u-turns, the map matching result is still not good
enough, as shown in Figure 2(c). Once detection of missing
blocks is enabled, the algorithm is able to add new blocks
and continue as normal until producing the result shown in
Figure 2(d). In this example, a total of nine new blocks were
added as a result of our algorithm.

547

(a) Area of map with
incomplete data.

(b) Section of GPS ob-
servations from a track
ridden by a user.

(c) Map matching with
u-turns, but no detec-
tion of new blocks.

(d) Final match. New
blocks are shown in
light green.

Figure 2: Map matching and building

d meters added blocks added
50 117.1 0.5
40 146.5 0.8
30 207.4 1.3
20 414.7 3.0
10 842.7 10.8

Table 1: Average number of meters and blocks
added for each track for each cutoff distance.

1 block removed 2 blocks removed
false false false false

d negatives positives negatives positives
50 33.5% 5.4% 51.5% 6.0%
40 30.7% 6.3% 48.7% 7.2%
30 25.7% 7.7% 45.1% 9.6%
20 16.1% 9.7% 36.0% 13.8%

Table 2: Percentage of test runs with false positives
and false negatives.

5. EXPERIMENTS

5.1 Dataset
We tested our algorithm using the Cyclopath map of the

Twin Cities, which has more than 155,000 blocks covering
more than 20,000 miles. In addition to being a collabora-
tively edited geographic system, Cyclopath is also a com-
putational system that uses VGI to compute bike-friendly
routes. We used GPS data collected by a mobile Cyclopath
Android app. After pre-processing GPS trace information
and removing tracks that were too short, we had 128 GPS
tracks. Each track had an average of 1450 GPS observations.
The average length was 1.75 mi and the average duration
was 8.5 min, with the longest ride taking 50 min.

5.2 New blocks
We first tested the algorithm by running it on the map

dataset to see: (1) the amount of new blocks it could find
and (2) the length of those new blocks. This gives us an idea
of how much benefit we could expect from this algorithm
in terms of new block information. Since the value of the
cutoff distance d can significantly affect the results of the
algorithm, we ran the algorithm with several different values.

Table 1 shows the results for cutoff values between 10 and
50 meters. As expected, a smaller d means the number of

false positives (blocks that should not have been created)
will increase, but the number of false negatives (blocks that
should have been created but were not) will decrease.

In order to correctly verify which newly created blocks are
false positives and which ones are true positives a gold stan-
dard is required. In principle, we could evaluate the results
by visualizing each new block with aerial photos; however,
this approach does not scale. In order to better evaluate our
algorithm, we decided to try the following idea: remove ex-
isting blocks from our map dataset and see if the algorithm
can find them with the given GPS tracks.

5.3 Tests removing existing blocks
Existing blocks in our system can serve as a type of truth

to aid in testing our algorithm. The idea is that if the
matching algorithm matches to a certain block when run
normally, if we remove that block, the algorithm should be
able to recreate the block from the GPS observations. The
accuracy of the algorithm for blocks in our system can be a
predictor for accuracy for new, unknown bocks.

To test this, we first took every matched ride and re-
moved the first and last blocks, as these blocks are often
matched on the basis of very few observations and are there-
fore matches of low confidence. We then removed from each
sequence those blocks that were created by our algorithm
when matching, since these blocks were created from the
GPS tracks we are trying to test. Finally, we ran the algo-
rithm for each ride, once for each block in the sequence of
blocks to be removed for that ride.

The results are shown in Table 2. We define false positives
as test runs where more than one block was created and
false negatives as test runs where no blocks were created.
As expected, as the cutoff distance is decreased, the amount
of false negatives also decreases as we are able to find new
blocks more accurately, but the amount of false positives also
increases, as new blocks get added when they shouldn’t.

False negatives occur when the algorithm is able to find
a different block to match to, such as in Figure 3(a). The
bigger the cutoff distance, the higher the probability that
another nearby block can replace the removed block in the
sequence of matches. One common cause is parallel blocks,
such as bike paths, which often follow along main roads.
Thus, a motivation for reducing false negatives is to able to
find bike-related facilities such as these.

False positives occur when the algorithm created more
blocks than it should have. This is the case for overpasses,
such as in Figure 3(b). It is difficult to know for certain if

548

(a) An example of false neg-
atives, where observations
match to nearby blocks and
the true block is not created.

(b) An example of false pos-
itives, where more blocks are
created than actually exist.

(c) An example of incor-
rect block geometry resulting
from a user making a u-turn
on a new block.

(d) An example of a case
where the intersection is off-
set from the GPS observa-
tions.

Figure 3: Map building issues

an intersection exists at the point where two blocks intersect
unless the user actually turns at the intersection.

In this project we did not focus on creating high-quality
blocks, so that left us with some space for improvement:

Noise. One case where our current algorithm could do a
better job is in simplifying geometries of new blocks, espe-
cially when a lot of noise is involved. This is often an issue
when the users wanders around the end of his ride or when
the users u-turns on a new block, such as in Figure 3(c).

Intersections. As discussed earlier, correctly creating
blocks near intersections is also an issue. This is the case
not only for overpasses, but also when the intersection is
slightly offset from the observations, such as in Figure 3(d).

Bias. New geometries are biased towards the first obser-
vations used. In most map building algorithms, new obser-
vations are integrated with older observations to create the
final blocks. But in our case, we create new blocks using
only information from the current track.

The advantage of a geowiki is the fact that we can leverage
user input in order to make up for many of these deficiencies.
We could ask users to fix geometries created with noisy GPS
data, decide whether an a new block intersects or not with
older blocks, and update old geometries based on new GPS
data. Users can also help detect false positives and false
negatives. We could potentially allow users to interactively
adjust the cutoff distance in order to change the amount of
new blocks created by the algorithm.

5.4 Removing more than one block
In order to get an idea of how the algorithm might perform

in situations with less data available, we tried the same tech-
nique as in the previous section, but removing two blocks in
a row instead of just one. The results for number of tests
with false negatives or false positives are shown in Table 2.

Both false positives and false negatives increased signifi-
cantly when we increased the amount of missing blocks by
just one. This is an indicator that our algorithm does not
necessarily scale well for map data sets with too much miss-
ing data. This results from using a single set of GPS traces
to create a representation of the road network.

6. CONCLUSION
With the rising popularity of systems that depend on Vol-

unteered Geographic Information, it is important to develop
algorithms that can handle missing map data. This paper
provides one such bridge between map matching and map
building algorithms. It is ideal for geographic applications

that are in constant evolution, such as geowikis. The ”match
when possible, build when needed”approach is a great fit for
applications with (possibly) incomplete map data.

7. ACKNOWLEDGEMENTS
We thank the members of GroupLens Research, the Cy-

clopath team, and the Cyclopath user community. This
work was supported in part by the NSF grant IIS 08-08692
and by a GAANN fellowship.

8. REFERENCES
[1] R. Bruntrup et al. Incremental map generation with

gps traces. In Intelligent Transportation Systems,

2005. Proceedings. 2005 IEEE, pages 574 – 579, 2005.

[2] L. Cao and J. Krumm. From gps traces to a routable
road map. In Proc. 17th ACM SIGSPATIAL GIS, GIS
’09, pages 3–12, 2009.

[3] M. Haklay. How good is volunteered geographical
information? a comparative study of openstreetmap
and ordnance survey datasets. Environment and

Planning B: Planning and Design, 37(4):682–703, July
2010.

[4] J. Hood et al. A gps-based bicycle route choice model
for san francisco, california. Transportation Letters:

The International Journal of Transportation Research,
3(1):63–75, 2011.

[5] B. Hummel. Map matching for vehicle guidance. In
Dynamic and Mobile GIS: Investigating Changes in

Space and Time. CRC Press, 2006.

[6] J. Krumm et al. Map matching with travel time
constraints. In SAE World Congress, 2007.

[7] M. A. Quddus et al. Current map-matching algorithms
for transport applications: State-of-the art and future
research directions. Transportation Research Part C:

Emerging Technologies, 15(5):312 – 328, 2007.

[8] S. Schroedl et al. Mining gps traces for map
refinement. Data Mining and Knowledge Discovery,
9:59–87, 2004.

[9] A. Thiagarajan et al. Vtrack: accurate, energy-aware
road traffic delay estimation using mobile phones. In
Proc. 7th ACM Conference on Embedded Networked

Sensor Systems, SenSys ’09, pages 85–98, 2009.

[10] A. Viterbi. Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm.
Information Theory, IEEE Transactions on, 13(2):260
–269, April 1967.

549

