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ABSTRACT
All new researchers face the daunting task of familiarizing
themselves with the existing body of research literature in
their respective fields. Recommender algorithms could aid
in preparing these lists, but most current algorithms do not
understand how to rate the importance of a paper within
the literature, which might limit their effectiveness in this
domain. We explore several methods for augmenting exist-
ing collaborative and content-based filtering algorithms with
measures of the influence of a paper within the web of cita-
tions. We measure influence using well-known algorithms,
such as HITS and PageRank, for measuring a node’s im-
portance in a graph. Among these augmentation methods
is a novel method for using importance scores to influence
collaborative filtering. We present a task-centered evalua-
tion, including both an offline analysis and a user study, of
the performance of the algorithms. Results from these stud-
ies indicate that collaborative filtering outperforms content-
based approaches for generating introductory reading lists.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—information filtering, retrieval
models, search process; H.3.7 [Information Storage and
Retrieval]: Digital Libraries—systems issues, user issues

General Terms
Algorithms, Experimentation, Human Factors

Keywords
citation web, collaborative filtering, digital libraries, recom-
mender systems, user study

1. INTRODUCTION
Researchers new to a field — both new researchers, such as

first-year Ph.D students, and experienced researchers transi-
tioning to work in a new field — face a challenge in “reading
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in” to that field. They need to be able to locate the sem-
inal papers that initiated inquiry into that domain, and to
be confident that what they are reading gives them a suf-
ficiently complete understanding of the topic that they can
map out the existing literature.

Researchers currently accomplish these tasks by follow-
ing reference lists in already-identified papers and surveys,
searching literature collections (commonly using tools such
as Google Scholar), and receiving reading recommendations
from researchers already working on the topic. This type of
knowledge exploration seems like a good candidate for en-
hancement with computer-based tools. Looking at a refer-
ence list or set of search results, it is difficult for a researcher
unfamiliar with the field in question to evaluate which pa-
pers have been influential in the development of the field
and identify the fountainheads of streams of research. If al-
gorithms could help filter through the literature and bring to
light those papers which have had high impact, they could
make the task of familiarizing oneself with existing work
significantly easier. Based on previous successes in applying
recommender technology to problems in the research paper
domain [14, 22], we present here our investigation into meth-
ods of automating the production of reading lists.

To further refine our notion of the user’s task, we assume
that a user has seen or been given a few papers on the topic
they want to read about, but does not know what the im-
portant papers in that field are. Therefore, the task con-
sidered in this work (which we call the Reading List task)
is to take a set of papers, called the query set, and produce
a short reading list that will serve as a good starting point
for understanding the field of which the query set is a part.
Following human-recommender interaction theory [16], we
used the Reading List task to drive the design of both the
algorithms and their evaluation. Task-centered evaluations
allow an algorithm to be optimized for its utility to a par-
ticular task rather than generic prediction accuracy on a
ratings set [15]. This has the potential to result in systems
that are better able to meet users’ particular needs.

The primary technical aspect of this work is a presenta-
tion and evaluation of methods for using known structure in
the item space to improve recommendation quality. Tradi-
tional collaborative filtering (CF) approaches are “blind” —
they have no knowledge of the items or of any relationships
that may be intrinsic in the domain. The method we use for
applying CF to the research literature gives it some knowl-
edge of relationships, but this knowledge is local, extending
only to co-citations [14]. Content-based approaches have
knowledge of various characteristics of the items themselves,



but many do not take into account item relationships. Link
ranking algorithms, such as PageRank, HITS, and SALSA,
attempt to computationally measure the global importance
of individual nodes in directed graphs. The exact human-
perceivable characteristic captured by these algorithms is
unknown (and may vary from algorithm to algorithm), but
they have proven effective as a means of measuring the im-
portance and/or influence of resources in citation or link
graphs. Throughout the rest of this paper, we will use “im-
portance” to mean the combination of a paper’s importance
as a stand-alone work and its influence on subsequent work
captured by the link ranking algorithms.

We test several approaches for incorporating importance
metrics into existing recommender approaches to determine
whether they enable the resulting system to create better
reading lists. Among these approaches is a novel method
for using augmenting collaborative filtering with these global
graph ranking scores.

Our work, and this paper, is divided into three main com-
ponents. First, we build a diverse pool of candidate recom-
mender algorithms with and without link structure infor-
mation (a total of 177 algorithms in 5 families). We then
perform an offline evaluation of the candidates to select the
best algorithms to represent the various families under con-
sideration. Finally, we present the results of a user study in
which we asked researchers to evaluate the quality of read-
ing lists produced by the representative algorithms selected
by offline analysis.

2. RELATED WORK
Recommender systems, particularly ones based on collab-

orative filtering, have been widely studied for some time.
They have been applied to a variety of domains, includ-
ing USENET articles [20], jokes [6], college courses [9], and
research papers. In applying collaborative filtering to re-
search papers, there are two major approaches. The most
straightforward, exemplified by CiteULike [1], is to treat
users’ reference collections as their histories or purchase bas-
kets and provide recommendations based on similarities in
reference collections. An alternative approach, which avoids
the cold-start problem of obtaining sufficient user profiles to
generate recommendations, is to use the citation web itself
to compute similarities and thereby generate recommenda-
tions. This is the approach taken by TechLens [14, 22] and
forms the basis of our application of CF.

A variety of algorithms have been proposed for comput-
ing the importance of nodes on a directed graph. Many of
these were initially conceived in the context of web pages
connected by hyperlinks, but they are readily applicable to
other directed graph contexts such as the web of citations in
research literature. Of the available algorithms, we consider
three. PageRank uses a random walk to rate the quality or
authority of web pages based on the assumption that high-
quality, authoritative pages will be linked to frequently, par-
ticularly by other good pages, and thus be well-connected [3,
19]. HITS uses mutually-reinforcing concepts of “hubs” and
“authorities” to similarly rate web pages [8]. SALSA strikes
a middle ground, using a stochastic approach on a bipar-
tite hub/authority graph to avoid the topical tunnel vision
sometimes exhibited by HITS [11].

Several authors have extended these algorithms to com-
pute importance relative to a fixed set of known authori-
ties, a natural mapping for the reading list task. White and

Smyth present several such algorithms, some based on HITS
or PageRank and some independently designed [23]. Chang
et al. proposed another method in the context of creating
customized authority lists [5], but the gradient descent used
in their algorithm significantly decreases the sparsity of the
link graph matrix, causing tractability problems for this ap-
proach.

Ranking algorithms are frequently used in combination
with text-based information retrieval methods [8], which
themselves constitute a form of content-based recommender
system. We are not aware of any prior work combining these
ranking algorithms with collaborative filtering. Massa and
Avesani’s method for integrating trust weightings into user-
user collaborative filtering is somewhat similar [13]; while
their method can be described as weighted user-user CF, we
propose user-weighted item-item CF.

Our CF approach is also similar to CC-IDF [10] and the
authority vector approach of [12]. Both of these computa-
tions are effectively weighted versions of bibliographic cou-
pling, and are aimed at computing node similarity rather
than authority (although the authority vector method does
use local authority to influence similarity); our weighted
CF uses global authority and is more closely related to co-
citation than coupling.

3. ALGORITHMS
We considered a variety of algorithms for recommending

reading lists. When combined, they yielded a pool of 177
recommender algorithms, plus additional algorithms elimi-
nated early in our testing. These algorithms are assembled
from various pieces; figure 1 shows the structures of the dif-
ferent classes of algorithms we considered.

3.1 Graph Ranking
To compute the importance of a paper based on its con-

nectivity in the citation web, we considered three core al-
gorithms. These algorithms all fit the same basic structure:
given a directed graph G = 〈V,E〉, they produce a scoring
function r : V → R such that r(a) is the measure of the
importance of node a in the graph.
PageRank [3, 19], the heart of the Google search engine,

scores nodes with their probabilities in the stationary distri-
bution of a modified random walk on the link graph. This is
a well-known ranking algorithm, and the underlying random
process is intuitive and well-suited to modeling browsing and
reading behavior. The resulting scores represent the prob-
ability of viewing a particular node through browsing the
citation or link web; important papers should be reachable
through many paths and thus have high scores.

HITS [8] produces two rankings of the graph. The au-
thority score rates a node’s authority, as measured by the
extent to which it is referenced by other work, and the hub
score rates a node’s ability to point to authoritative sources.
These relationships are mutually reinforcing (good hubs ref-
erence good authorities), and the scores are computed as the
fixed point of this relationship. HITS is also well-known, and
its distinction between a site or paper’s role as a hub and as
an authority is particularly appealing for trying to find im-
portant, authoritative papers. We used the HITS authority
score for our ranking.

SALSA [11] is a stochastic algorithm similar to HITS, but
is based on a random walk on the bipartite hub-authority
network. It represents a middle ground between PageR-
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Figure 1: Recommender algorithm structures

ank and HITS, providing a stochastic method with distinct
hub and authority ratings. Further, the authors argue that
SALSA is able to pick out the authorities of several topics in
a multi-topic graph, whereas HITS will likely only identify
the authorities on a single topic. This ability could give it an
edge in dealing with graphs that span several well-defined
topics in the literature as well as providing more useful re-
sults when applied to the entire web. As with HITS, we used
the resulting authority scores.

We also considered two biased ranking algorithms. In
their original, forms, HITS, PageRank, and SALSA all com-
pute an absolute measure of importance in either the com-
plete graph or a topical subgraph, not considering any ad-
ditional information that may be known about node impor-
tance. The biased algorithms compute importance relative
to a particular set S ⊂ V (in our case, the user’s query set)
of nodes. That is, they take S to be a set of nodes known to
be important and use their links to influence the importance
scores of the rest of the network. The insight for trying these
algorithms as well is that they may be better at identifying
the important papers most relevant to the user’s query.

The first of the biased algorithms is HITS with Priors,
which interprets HITS stochastically and extends it with a
prior that causes the nodes in S to be preferred. The other
is k-step Markov importance, a stochastic algorithm based
on fixed k-step random walks originating at nodes in S; we
use k = 10. Both of these algorithms are described by White
and Smyth [23].

In all cases, our network is built from the reference lists
of the articles in our data set: there is an edge from a1 to a2
if a1 cites a2. We also normalize importance scores to have
a maximum score of 1 (rather than summing to 1, as many
of them naturally do).

3.2 Collaborative Filtering
Our collaborative filtering algorithm is standard item-item

collaborative filtering in a unary ratings space [7]. This algo-
rithm is widely used, has proven to perform well in a variety
of applications, and the implications of implementing it over
a unary item space are well-understood. We build the rat-
ings matrix from the citation web by treating each article
as both a user and an item, where each article has “pur-

chased” the articles it cites [14]. This allows collaborative
filtering to be done using information available in the article
metadata, avoiding the user cold-start problem that plagues
many applications of collaborative filtering.

We tested three versions of the basic CF algorithm. The
first, cf-plain is raw item-item CF without any normaliza-
tions applied. The second, cf-unit, uses both of the normal-
izations proposed by Karypis [7]: in an e-commerce domain,
the user purchased vectors are normalized to unit vectors
prior to similarity computation and item-item similarity vec-
tors are likewise scaled to unit vectors. For the user vector
normalization, if u is the vector of user u’s purchases such
that ui is 1 if u purchased i and 0 otherwise, the normal-
ized vector û = u/‖u‖2. This normalization has the effect
of causing users who have purchased fewer items to exert
more influence on the similarity of the items they have pur-
chased. The item similarity vector normalization operates
similarly on the rows of the item-item similarity matrix and
has the effect of increasing the influence of items with sparse
neighborhoods (and thus higher information value in their
neighborhoods) on the final predictions. The third CF vari-
ant is cf-full-unit, a variant of cf-unit which uses the total
reference list length (cf-unit only counts references to other
papers in the data set we used when computing the citation
vector length; details on the data set are in Section 4.1).

To use graph ranking to influence collaborative filtering,
we weight papers by their graph importance score prior to
building the item-item similarity matrix. Our approach was
inspired by Karypis’s user vector normalization. To inte-
grate a graph ranking algorithm, we replace the user-unit-
vector normalization with a normalization step which mul-
tiplies each paper’s citation vector with the paper’s impor-
tance score r(u) such that û = r(u)u. This causes papers
with higher importance scores (e.g. higher PageRank) to
exert more influence on the similarity of papers they cite,
thus biasing the collaborative filter to favor the “opinions”
of more authoritative papers. We tried each of PageRank,
HITS, and SALSA for weighting the collaborative filtering
algorithm. Biased ranking algorithms are not practical in
this context because they would require recomputing the
item-item similarity matrix for each query.



3.3 Content-Based Filtering
The content-based algorithms we used locate similar pa-

pers by text matching on the title, abstract, and keywords
provided by the paper. To find papers matching the query
set, we concatenate the text of each of the papers in the
query set into a single document and score papers based on
their similarity to this document. In our previous work, this
was considered as the CBF-Combined algorithm [22].1

We used the Lemur toolkit [18] (version 4.11) as our text
search implementation. Our querying used Lemur’s BM25
TF retrieval method with k1 = 1.2, b = 0.75 for documents
and k1 = 1000, b = 0 for queries. These values are recom-
mended by the Lemur developers based on TREC perfor-
mance results [24, 21].

We tested two approaches for augmenting CBF with arti-
cle importance scores: subgraph ranking and blending.

Subgraph ranking is the method used by Kleinberg for
applying HITS to web search [8]: we compute the top 200
matches for the query, not including members of the query
set itself, using Lemur, and take the union of these results
and the query set to produce a base set B. We then add
to B all papers citing or cited by papers in B. The mem-
bers of B are combined with the citations between them to
form a subgraph G′ of the citation web, and are ranked by
nonincreasing importance score within G′. We used all five
ranking algorithms for this method.

The blending method scores each candidate paper using
a linear combination of the search score reported by Lemur
and its graph rank within the whole citation web, using the
following formula (where L(a) is the text search score and
r(a) the rank):

s(a) = αL(a) + βr(a)

We determined the coefficients α and β by training a mul-
tivariate logistic regression against a training set of articles;
the details of the training are described in section 4.2. We
excluded the relative ranking methods from this method to
avoid re-ranking the entire citation web for each query.

3.4 Hybridization Techniques
We tested three hybridizations of these algorithms: CBF-

CF, CF-CBF, and Fusion [22]. CBF-CF takes the output
of a CBF recommender, possibly with ranking, and uses it
(along with the original query set) as the query for a CF
recommender. CF-CBF does the reverse: the output of a
CF recommender is unioned with the query set and used as
the input to CBF. In Burke’s taxonomy [4], these are both
cascade hybrids.

Fusion, a weighted hybrid in Burke’s taxonomy, runs a
CF and a CBF recommender in parallel and blends the re-
sulting ranked lists. The first items on the combined rec-
ommendation list are those items which appeared on both
input lists, ordered by the sum of their ranks on each of the
single-algorithm lists. After all items listed by both recom-
menders, the combined list contains the remaining items,
alternating between the recommenders. Figure 2 shows an
example of this process.

We applied each hybridization technique to each pairwise
combination of CF and CBF algorithms. The breakdown of
the resulting pool of 177 algorithms is shown in Table 1.

1We also tried CBF-Separated, but its computation cost and
poor performance in early trials led us to abandon it.

1 2 3 4 5
List 1: A B C D E
List 2: B F E A G
Combined list:

B A E C F D G

Combined ranks:
A=5, B=3, E=8

List 1 remainder:
C, D

List 2 remainder:
F, G

Figure 2: Example of Fusion on two lists

Class Count Notes

CF 6 raw, 2 unit-norm, 3 rank-weighted
CBF 9 plain, 3 blended, 5 subgraph-ranked
CBF-CF 54 each CBF as input to each CF
CF-CBF 54 each CF as input to each CBF
Fusion 54 each CF fused with each CBF

Table 1: Algorithms by category

4. OFFLINE EVALUATION
We performed an offline evaluation of our pool of rec-

ommender algorithms to understand their relative strengths
and weaknesses. This also served as way to select a small
number of algorithms to subject to human testing. This
evaluation was intended to provide a reasonable simulation
of the reading list task.

4.1 Data Set and Evaluation Strategy
Our data set, for both the offline evaluation and live user

study, was a dump of the metadata in the ACM Digital
Library from April 2010. The dump contains bibliographic
information for 256,937 articles and nonempty reference lists
for 201,145 of those (empty reference lists can be a result
either of the paper lacking a reference list, or the digital
library not successfully extracting the reference list from the
hard copy or PDF). References to articles not in our article
set were ignored for our citation web computations.

Previous work on research paper recommendation [14, 22]
evaluated recommenders for the task of finding additional
citations for in-progress papers by doing a hold-out test on
randomly-selected papers in the literature: for each test
paper, one paper was held out from its reference list and
looked for in set of recommended papers. This strategy pro-
duced effective task-based evaluations for the problem of
finding additional citations. In order to perform a similarly
task-based offline analysis specifically geared towards eval-
uating performance in the context of building reading lists,
we needed a set of good introductory reading lists. We used
survey articles for this purpose. We expect survey articles to
have bibliographies tailored to familiarizing readers with the
history and current state-of-the-art of a topic; their reference
lists, therefore, should provide a closer approximation of the
reading lists we desire to produce than general research pa-
pers. To obtain a set of such lists, we used the reference lists
of articles appearing in ACM Computing Surveys (CSUR)
for our offline evaluation.

After removing all CSUR articles from our data set, each
CSUR article with at least 15 references to articles remaining
in the data set was used as a simulated reading list. This
threshold ensured that test lists were long enough for the
recommenders to work and had the side effect of excluding
short research papers published as surveys. It also excluded
papers referencing mainly papers outside the data set or
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Figure 3: Collaborative filtering performance

whose reference lists were unavailable. 220 out of 1185 total
CSUR articles qualified as test lists. These articles were
then split into two sets of 110 articles each, one to train the
linear combination for blending ranks and text searches and
the other to evaluate algorithm performance.

We performed the actual testing by randomly holding out
5 citations from each qualified list and using the remaining
citations (at least 10) as the query set. Each recommender
produced a ranked list of up to 100 papers. We evaluated
the algorithms using the half-life utility metric [2] with a
half-life α of 5 (the length of our target recommendation
lists) and a utility ua,i equal to 1 if the paper at position i
in the list of recommended papers is in article a’s held-out
citations and 0 otherwise:

Ra =
∑
i

ua,i
2(i−1)/(α−1)

Since all reading lists had the same number of held-out
citations, the maximum utility Rmax = 3.6426 is the same
for all articles, and a each recommender’s performance R
over the whole test set T is the fraction of total maximum
utility achieved:

R =

∑
a∈T Ra

|T |Rmax

The resulting score is in the range [0, 1], with a recom-
mender that always placed the held-out items at the begin-
ning of its list receiving a score of 1.

4.2 Training the Linear Blend
We trained the linear blend of content-based filtering and

graph ranking using the same basic setup. We held out 5
items from each list in the training set and used the text of
the remaining items as the query to Lemur. We learned a lo-
gistic regression for a response variable equal to 1 for articles
in the target set and 0 otherwise against the text-similarity
score and rank, with a separate regression for each ranking
algorithm. The coefficients from this regression became the
coefficients in the blending function; since our evaluation de-
pends only on rank and not actual scores, the intercept and
log function were irrelevant.

4.3 Individual Algorithm Results
Figure 3 shows the results for the collaborative filtering

algorithms in our pool. CF with PageRank and SALSA
performed better than standard collaborative filtering (cf-
unit), and this difference is statistically significant (p < 0.02
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Figure 4: CBF performance

in a matched-pairs t-test).2 There was no difference between
PageRank and SALSA weighting, and HITS weighting did
not perform well.

Figure 4 shows the results achieved by the content-based
algorithms. HITS ranking shows a slight improvement over
other algorithms, but differences among algorithms perform-
ing at least as well as CBF are not significant (using ANOVA
with Tukey’s Honest Significant Differences method for mul-
tiple pairwise comparisons). It is interesting to note that
PageRank and SALSA performed poorly in the subgraph-
ranking configuration. These algorithms’ performance picks
back up in the linear blending configuration, suggesting that,
unlike HITS, these algorithms may perform better when op-
erating on the entire citation web than on a topical sub-
graph. For PageRank, this is not surprising, as PageRank
is generally computed over the entire Web. SALSA is pre-
sented, however, using the subgraph-ranking configuration
of HITS; our results suggest that SALSA may provide more
benefit when applied to a graph as a whole rather than to a
topical subgraph.

4.4 Overall Results
Figure 5 shows the results from the three best algorithms

in each class (CF, CBF, and each of the hybridization strate-
gies). Of the hybrids, CBF-CF performs the best, although
not as well as plain collaborative filtering.

5. USER-BASED EVALUATION
While the offline analysis is useful in narrowing the set

of candidate algorithms and providing preliminary insight
into how the various algorithms will perform, user testing
is required to assess actual performance for the task. To
that end, we asked graduate students in the University of
Minnesota Computer Science department to use three of the
algorithms and evaluate the reading lists they provided.

Based on the offline analysis, we selected three represen-
tative algorithms for user testing:

• CBF with Biased HITS subgraph ranking (CBF)

• CBF fed through PageRank-weighted CF (CBF-CF)

• PageRank-weighted CF (CF)

2While we perform significance testing using ANOVA with
Tukey’s Honest Significant Differences generally in this pa-
per, a matched-pairs t-test is appropriate for measuring a
specifically-targeted single difference.
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Figure 5: Performance of selected algorithms

We chose PageRank over SALSA for our CF weighting
because it is used more widely and the two algorithms per-
formed equivalently.

5.1 Methodology
Students using our survey tool first used a search form

to construct a query set consisting of 5-10 papers. The
tool then used their query set to build a 5-item reading list
with each of the three recommenders and asked the user to
evaluate each list on its suitability for introducing a new
researcher to their topic and its coverage of the necessary
aspects of the topic.

Assessing the coverage of a retrieval or recommendation
system is difficult when experts are available; that difficulty
is exacerbated when the target audience has less experience
with the target domain. Many of the students we asked to
participate had recently completed literature surveys, how-
ever, so there was at least one topic with which they should
be fairly familiar. We attempted to get at coverage by ask-
ing how many of the articles on the recommended list they
would keep in a 5-item reading list, assuming that the items
discarded would be replaced with other articles filling in gaps
in the recommended reading. Our attempt to evaluate cov-
erage is limited, but can still provide some insight into how
the reading lists were received.

After evaluating the recommendation lists, users were pre-
sented with a single list of all articles recommended by any
of the tree algorithms in a and asked to evaluate each one on
its relevance to their topic, importance within their topic,
and their familiarity with the paper. Relevance was rated on
a 1-5 scale, with 1 being “Exactly on-topic” and 5 being “Ir-
relevant”; importance on whether a reading list would need
to contain 5, 10, 25, 50, or more items before they would in-
clude the paper (1-5 respectively). For further clarification,
the tool picked one each of their highest- and lowest-rated
papers on the relevance and importance scales (up to 4 pa-
pers total) and asked for a free-text explanation of why they
rated it the way they did on that scale.

The final step of the survey asked users to order the three
recommendation lists by quality and provide general feed-
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Figure 6: User evaluations of recommendation lists

CBF-CF CBF
CF 1.947 1.105
CBF-CF 2.368

Table 2: Average common items on reading lists
between each pair of algorithms

back on the system, their assessment of its usefulness, and
their stage of graduate education.

5.2 Results
19 users completed our survey. Of these, 1 had already

completed their Ph.D, 6 were M.S. students, and the re-
maining 12 were at various stages in pursuing a Ph.D. Un-
less otherwise mentioned, all significance tests in this section
were performed using a block-design ANOVA with Tukey’s
Honest Significant Differences [17].

The user evaluations of recommendation lists as a whole
are shown in Figure 6. The rank score is determined by giv-
ing a recommender 3 points for a 1st-place ranking, 2 for 2nd,
and 1 for 3rd. In general, users preferred the lists generated
with at least some use of collaborative filtering. On both
the quality rating and list ranking, CBF-CF and CF both
had significantly better scores than CBF (p = 0.01). While
the relative ranking of CF and CBF-CF was not significant
in our responses, it is consistent with the offline results. As
seen in Table 2, the recommendation lists also showed sig-
nificant variation, particularly between CF and CBF.

Some users provided comments on some of the lists they
were provided. Of particular note were comments we re-
ceived on the diversity or lack thereof of the lists. One user,
commenting on a list provided by CBF-CF, said the list was
on a broad topic rather than the specific sub-area they were
interested in. Another received a list (from CBF) that was
too focused on a particular topic when they were looking
for a broad list. CF gave another user a list that focused
on a different but related topic; this is consistent with CF’s
high dependence on co-citations. These diverse experiences
show that there remains work to be done on improving and
measuring the consistency of providing recommendations in
line with the desired topic scope.

Figure 7 shows the evaluations of the individual recom-
mended papers by recommender. It shows the same ordering
as was seen in the evaluation of entire lists on both relevance
and importance. Some of the differences in relevance scores
are statistically significant; CF produced more relevant re-
sults than CBF (p < 0.01). The importance and familiarity
differences were not statistically significant (importance was
marginally significant, with the ANOVA yielding p = 0.06
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Figure 7: Mean user evaluation of individual recom-
mended papers

for an effect in response to the recommender algorithm. CF
vs. CBF was the significant pairwise difference).3

5.3 User Reception
The concept of the tool was well-received, with 13 of the

19 respondents either agreeing or strongly agreeing that “a
tool like this would be useful for exploring unfamiliar areas of
the research literature.” Users also expressed specific appre-
ciation for the idea, with comments like “Literature searches
are difficult; any sort of automation would be greatly appre-
ciated.” and “With enough good data, this would be great.”

Some respondents also provided us with specific shortcom-
ings or useful features of the algorithms. One said:

In my case, being interested in a specific problem
doesn’t mean I’m interested in a broader class of
problems of which mine is a member. The tool is
able to identify the broader classes, but it fails to
discriminate which approaches are suitable for a
specific problem.

Another was pleased with some distinctions our algorithms
made:

I asked about a difficult domain: social Q&A.
It’s a young research area, and it often gets con-
fused with the field of NLP ”QA” research. Your
tool was able to disambiguate cleanly between
research on social Q&A and NLP QA.

The positive response from users shows that systems of
the kind we describe, if refined and made generally available,
could provide significant benefit to the research community.

6. CONCLUSIONS AND FUTURE WORK
We have presented and empirically tested a large collec-

tion of recommender algorithms, showing that collaborative
filtering seems to perform well for the task of generating

3To control for the lack of independence in the individual
article evaluations due to the articles being selected 5 at a
time by each recommender, we computed the mean of each
evaluation for each (user,recommender) pair and performed
a block-design ANOVA across the means. The means con-
stitute individual independent observations, satisfying the
independence assumption of ANOVA.

reading lists for new researchers. This type of task-based
evaluation is crucial as recommender systems are applied in
more contexts. Using specific user tasks to drive algorithm
design and evaluation strategy allows recommenders to be
tailored to the specific needs of their target audiences and
facilitates more accurate assessment of their true utility.

The core innovation of many of these algorithms was the
use of graph ranking algorithms as an estimate of the im-
portance or influence of a paper within the citation web.
While the integration of graph ranking and text-based search
is well-known, we have described a method of using graph
rank weights to influence item-based collaborative filtering
and shown in offline tests that it can improve accuracy of
recommendations. This method is generally applicable to
any collaborative filtering application where users can be
weighted or scored on some criterion. In offline analysis,
weighting the recommender provided a measurable boost in
performance. The resulting recommender also performed
well when assessed by users.

We were somewhat surprised to see collaborative filter-
ing beat the hybrid approaches, as hybrid recommenders
performed well in previous TechLens studies [22]. It seems
likely that this is a result of CF having characteristics better-
suited to the reading list task. It is also possible that this
is a result of using item-item CF rather than the user-user
algorithm in the previous work, but the results of a previous
study showing user-user and item-item CF algorithms per-
forming similarly in the research paper domain suggest that
task suitability is a more likely explanation [14]. Since the
CBF algorithms with ranking are similar to how search tools
such as Google Scholar work, these results also suggest that
collaborative filtering may be more useful than search en-
gines for building introductory reading lists, although more
specific and targeted research is needed before firm conclu-
sions can be drawn on their relative merits.

The results from our survey indicate that recommender
systems are a promising tool for helping new researchers ac-
climate themselves to the body of research literature in their
fields. Our users responded well to the tool, with many of
them indicating that they would find a generally-available
tool based on these concepts to be useful in their research.
The recommendation evaluations suggest that collaborative
filtering is a good method for building reading lists, although
more extensive user testing is needed to validate the of-
fline results and preliminary user-based results we have pre-
sented. User feedback also showed that more work is needed
on accurately assessing and operating within the scope of a
user’s query when providing recommendations.

Our algorithms omitted the user’s query set from result
lists. They are therefore incapable of telling the user that
one of their query papers is a key paper to read on the
topic. In real use where users may have some papers but not
know their importance, this is a notable shortcoming. How
can those papers be identified without just recommending
back the query set? Further, what kind of user interface is
needed to allow the user to make sense of such results? These
questions do not have obvious answers, and resolving them
would likely strengthen the benefit recommender-based tools
provide to researchers.

It can be seen by comparing our results with the prior
work that the specific task the recommender is asked to per-
form affects the relative performance for various algorithms.
More work is needed to refine the present algorithms for gen-



erating reading lists, and similar task-driven efforts for other
applications and domains will improve our understanding
of the performance of recommender algorithms in specific
contexts and the adjustments needed to provide maximum
benefit to actual users of particular systems.
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