
When Recommenders Fail: Predicting Recommender
Failure for Algorithm Selection and Combination∗

Michael Ekstrand and John Riedl
GroupLens Research

Dept. of Computer Science, University of Minnesota
{ekstrand,riedl}@cs.umn.edu

ABSTRACT
Hybrid recommender systems — systems using multiple algo-
rithms together to improve recommendation quality — have
been well-known for many years and have shown good per-
formance in recent demonstrations such as the NetFlix Prize.
Modern hybridization techniques, such as feature-weighted
linear stacking, take advantage of the hypothesis that the
relative performance of recommenders varies by circumstance
and attempt to optimize each item score to maximize the
strengths of the component recommenders. Less attention,
however, has been paid to understanding what these strengths
and failure modes are. Understanding what causes particular
recommenders to fail will facilitate better selection of the
component recommenders for future hybrid systems and a
better understanding of how individual recommender per-
sonalities can be harnessed to improve the recommender
user experience. We present an analysis of the predictions
made by several well-known recommender algorithms on the
MovieLens 10M data set, showing that for many cases in
which one algorithm fails, there is another that will correctly
predict the rating.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

Keywords
Recommender systems, evaluation, hybrid recommenders

1. INTRODUCTION
Hybrid recommender systems [1] are a well-known tech-

nique for harnessing the strengths of multiple recommenders
to produce results that are more accurate or useful than those
achieved by individual constituent recommenders. They have

∗The scripts to re-run the evaluations in this paper
are available at http://www-users.cs.umn.edu/~ekstrand/
recsys2012/recsys-scripts.tgz.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’12, September 9–13, 2012, Dublin, Ireland.
Copyright 2012 ACM 978-1-4503-1270-7/12/09 ...$10.00.

proven to be powerful means of trimming error; both top-
placing systems in the NetFlix prize used hybrids of many
algorithms [11].

One key development in the course of the NetFlix prize
was feature-weighted linear stacking (FWLS) [11], a method
of computing a linear combination of individual scoring func-
tions where the blending coefficients are functions of user or
item metadata rather than constants.

To win the NetFlix prize, however, contestants created large
ensembles of over 100 recommenders. Such large algorithms
are impractical to deploy in practice. Therefore, we need to
know how to select the algorithms to include in ensembles
for production deployments.

Additionally, while FWLS and other hierarchical meth-
ods [13] are important advances, they have to date provided
little insight into why different recommenders are good or
bad in particular circumstances. We seek to understand the
particular strengths and weaknesses of various recommender
algorithms. By understanding when individual algorithms
perform well or poorly, we can select algorithms with comple-
mentary strengths and combine them in ways that maximize
these strengths.

This work also has the potential to provide insight into
what “personalities” various algorithms possess, a key pre-
requisite for selecting and optimizing algorithms for specific
user needs. While past work has provided ways of reasoning
about user needs in recommendation [7] and using offline
evaluations [5] and user studies [12, 2] to evaluate algorithms
in the light of user needs, there remains to be gained an
understanding of the particular characteristics of the various
algorithms in use in a general sense. Developing this under-
standing will enable future systems to be built more easily
and with less costly testing, as algorithms can be selected
based on general properties and then validated and tuned
with user testing rather than involving users in every step.

To further these aims, we raise and attempt to address the
following research questions:

RQ1 Do different recommender algorithms make different
errors?

RQ2 Can we identify tractable features of users or items that
make them easier or harder for individual algorithms
to predict for?

RQ3 Does using these differences in recommendation errors
to drive a hybrid recommender improve recommender
performance?

The success of hierarchical hybridization strategies such
as FWLS suggests that these hypotheses are true, but we

seek to demonstrate this more concretely and develop a
transparent model for combining recommenders. Our goal is
not to immediately produce a more accurate hybrid, but to
gain insight into the relative performance of algorithms that
can inform future recommender designs and deployments.

To address these questions, we analyzed prediction error of
several algorithms using the LensKit recommender toolkit [3]
on the MovieLens 10M data set in a cross-validation setup.
While prediction accuracy is just one piece of the broader
picture of recommender usefulness and suitability, it pro-
vides a tractable way to inspect the differing errors made by
recommender algoritms.

2. RELATED WORK
Burke [1] provides an overview and taxonomy of hybrid

recommender systems, outlining a variety of methods (includ-
ing switching and weighting) that can be used to combine
individual recommenders into a composite recommender. In
this work, we focus primarily on switching hybrids, which pick
which recommender to use in each situation and report its
result alone; this framing provides the simplest way to study
what causes individual algorithms to succeed or fail. More
recent developments in hybridization include hierarchical
methods like feature-weighted linear stacking [11].

McNee [7] argued for designing and evaluating recom-
mender systems in the context of user needs, picking rec-
ommenders that provide specific characteristics that sup-
port user information needs. Later work [12] demonstrated
that different algorithms that perform similarly on aggregate
numeric measures of accuracy exhibit differing user-visible
behaviors.

3. METHODOLOGY
We used the MovieLens 10M data set1 (ML10M) and

the LensKit recommender toolkit [3] for our experiments.
We used LensKit’s evaluation framework to partition the
data set in a 5-fold cross-validation configuration. Users were
partitioned into 5 sets; for each user in each partition, we
randomly selected 20% of their ratings to be the test ratings
for that data set, with the remaining ratings plus all ratings
from users in the other partitions forming the training set.

We then ran five recommender algorithms on the data,
and captured the predictions each algorithm made for each
test rating. We used the following algorithms, choosing pa-
rameters based on prior results in the research literature and
experience tuning LensKit for the MovieLens data sets [3]:

• Item-user mean, the item’s average rating plus the user’s
mean offset with mild Bayesian damping to push means
based on few ratings towards the global mean [4]. This
algorithm was also the baseline for all others — if they
could not make a prediction, the item-user mean was
used.

• Item-item collaborative filtering [10] with a neighbor-
hood size of 30 and ratings normalized by subtracting
the item-user mean.

• User-user collaborative filtering [9] with a neighbor-
hood size of 30, using cosine similarity over user-mean-
normalized ratings [3]. In the predict stage, ratings were
normalized by z-score [6, 3].

1http://grouplens.org/node/73

• FunkSVD [4, 8] with 30 features and 100 training iter-
ations per feature.

• Lucene as a tag-based recommender. Since the ML10M
data set contains tags for movies, we created a document
for each movie containing its title, genres, and tags
(repeating each tag as many times as it was applied).
Recommendation were then computed as in item-item
collaborative filtering, with item neighborhoods and
scores computed by a Lucene MoreLikeThis query.

After running the recommenders, we processed each test set
to discard all users with fewer than 10 test ratings (ultimately
using 44,614 of the 69,878 users in ML10M) and splitting
their test ratings into two sets: 5 ratings from each user went
into a tuning set, and the remaining ratings stayed in the
test set.

FunkSVD

ItemItem

Lucene

Mean

UserUser

Blend

BestPred

ModelBest

TuneBest

UserBest

Single

Blend

Per Pred.

Per User

0.60 0.65 0.70 0.75 0.80 0.85

Global RMSE Per−user RMSE

Figure 1: Algorithm accuracy

The “Single” section of Figure 1 shows the overall RMSE
achieved by each of the recommender algorithms. “Blend” is
the predictions produced by a linear model of the individual
algorithms trained against the tuning set.

4. RESULTS
To evaluate and compare algorithm performance, we con-

sidered various types of measurements: getting a prediction
“right” (within some threshold, such as 1/2 star), being bet-
ter in absolute error than another algorithm, and providing
better accuracy overall for all of a user’s predictions. We
also tested per-item accuracy and have not yet found any
particularly interesting effects; therefore, we only present the
per-prediction and per-user results.

4.1 Getting Predictions Right

Algorithm # Good % Good Cum. % Good
ItemItem 1044371 52.23 52.23
UserUser 166008 8.30 60.53
Lucene 90018 4.50 65.03
FunkSVD 53313 2.67 67.70
Mean 21617 1.08 68.78
Unexplained 624291 31.22 100.00

Table 1: Cumulative good predictions (0.5 star)

0e+00

1e+05

2e+05

3e+05

4e+05

Fun
kS

VD

Ite
m

Ite
m

Lu
ce

ne

M
ea

n

U
se

rU
se

r

#
 o

f
p
re

d
ic

ti
o
n
s

Best algorithm (per prediction)

0

5000

10000

15000

20000

Fun
kS

VD

Ite
m

Ite
m

Lu
ce

ne

M
ea

n

U
se

rU
se

r

#
 o

f
u
s
e
rs

Best algorithm (user RMSE)

Figure 2: Distribution of best algorithms

Table 1 shows the cumulative “good” predictions for the
algorithms we tested. A prediction is considered “good” if
it is within 0.5 stars; the table is computed by first picking
the algorithm that has the most good predictions. The re-
maining algorithms are selected and computed by picking
the algorithm which has the most good predictions that no
prior algorithm has correctly made and adding it to the table.
So ItemItem predicts 52% of ratings correctly, UserUser an
additional 8%, and so on.

This result provides initial confirmation of H1: algorithms
differ in which predictions they get right or wrong. ItemItem
gets the most predictions right (52%), but the other algo-
rithms correctly make various predictions until 69% of all
test ratings are predicted correctly by at least one algorithm.

This result is robust to higher thresholds; using a threshold
of 1.0 stars for good prediction scales the ItemItem hit count
up and the other hit counts correspondingly down, but does
not change the relative ordering of algorithms.

The existence of differences in the errors made by individual
algorithms is further substantiated by the results shown
for “BestPred” in Figure 1. This is the RMSE achieved by
switching hybrid recommender that uses an oracle to select
the best predictor for each individual prediction; the left
side of Figure 2 shows how often each algorithm provided
the best prediction. This shows that, if we can perfectly
predict the best predictor to use, there is room for substantial
improvement in error. It therefore provides a lower bound on
the error of a switching hybrid comprised of the algorithms
in our experiment.

When selecting algorithms to deploy in an ensemble rec-
ommender, it is not necessarily desirable just to pick the ones
that perform the best. If two algorithms are highly corre-
lated in the errors they make, failing in the same cases, then
including both of them will likely not provide much benefit.
In selecting algorithms, we look for the following criteria:

• Unique benefit — individual algorithms should con-
tribute unique benefit with respect to the other algo-
rithms in the ensemble.

• Distinguishability — it should be possible to figure out
how to blend the algorithms or to select which one to
use.

• Tractability — given two algorithms with similar bene-
fit, prefer algorithms that are less expensive to operate.

In general, we found FunkSVD and ItemItem to be highly
correlated; the absolute error produced by each has a correla-
tion of ρ = 0.888, and ignoring one accrued the greatest ben-
efit to the other. This corroborates their showing in Table 1;
if we regenerate the table using FunkSVD first, ItemItem is
the last recommender to be picked before Mean. FunkSVD

and ItemItem had the two highest coefficients in the Blend
model, however, suggesting that they are contributing unique
signal beyond what can be picked up in a threshold analysis.

4.2 Comparing by User
For each user, we determined the algorithm that gave the

best RMSE on their test ratings. The right half of Figure 2
shows the distribution of best algorithms. As with optimiz-
ing individual predictions, no one algorithm is the winner,
suggesting room for intelligent selection of algorithms that
will perform better for different users and providing further
confirmation that different algorithms do make different mis-
takes.

To test H2, we tried several regressions to predict relative
algorithm performance. Using the log of the user’s rating
count, their average rating, and the variance of their ratings,
we were able to build a logistic model that showed signif-
icance and some predictive power for ItemItem being the
best algorithm if we ignore FunkSVD (since they have such
similar behavior, most users for whom FunkSVD was best
ItemItem as their second best algorithm). Table 2 shows the
coefficients of this regression; the probability of ItemItem
being the best predictor increases with the number of ratings
the user has provided and their rating variance, and decreases
as their mean rating increases. Relative to the other predic-
tors, therefore, ItemItem does better when more ratings are
available (not surprisingly), and is also mildly boosted by low
average ratings and high variance in user ratings. Thus H2 is
also confirmed — these features correlate with one algorithm
beating the others.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.8966 0.1045 -27.73 0.0000

log10(count) 1.6090 0.0227 70.80 0.0000
mean -0.1047 0.0224 -4.66 0.0000

var 0.2818 0.0203 13.85 0.0000

Table 2: “Item-item best” prediction model

The ROC curve, computed by holding out 20% of the
users as a test set, is shown in Figure 3; its area is 0.68,
suggesting that this regression may also be useful from a
practical standpoint for identifying when ItemItem is a good
choice of recommender.

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 3: ROC curve for predicting “ItemItem is
best”

Building an immediately useful hybrid from these findings
has so far been challenging. In Figure 1, the “Per User”

section shows the RMSE achieved by three different per-user
algorithm switching strategies. UserBest uses the algorithm
with the best RMSE for that user; it shows a lower bound on
the error of per-user switching hybrids optimizing for user
RMSE. It shows some improvement over all single algorithms
and over the linear blend, particularly when looking at per-
user error. It therefore seems that it should be possible to
achieve accuracy improvements through intelligent selection
of algorithms on a per-user basis.

TuneBest attempts to pick the best algorithm using the
predictions for each user’s 5 tuning ratings, then apply that
algorithm to the remaining test ratings. Using this approach
— which does not provide any insight into why the algorithm
is selected — achieves an accuracy a bit worse than the best
single algorithms (ItemItem and FunkSVD). Its per-user
RMSE is slightly better than any single algorithm.

ModelBest uses the 5 probe ratings to train a logistic
regression predicting whether either UserUser or Mean will
be better than ItemItem for that user based on the log of the
number of items the user has rated and an interaction term
between that and the variance of their ratings. In turning the
modeling from Table 2 around and using it to decide which
recommender to use, we found these features to be most
useful; variance on its own was not significant and did not
make a noticeable contribution in addition to the item count
and interaction terms, and mean was similarly unhelpful
in improving the regression’s power. The regression is then
thresholded to decide whether ItemItem or UserUser is used;
the threshold was chosen to produce a ratio of UserUser to
ItemItem choices that kept in line with the other two models.
The resulting predictor beats UserUser alone, but does not
improve upon ItemItem. It does, however, beat TuneBest ; we
infer from this that user features are useful for hybridization,
but there is still work to do to make this algorithm an actual
improvement over the current state of the art.

5. CONCLUSION AND FUTURE WORK
In our experiment, we found that recommenders do indeed

fail on different users and items, thus confirming H1. We
have also identified user features predicting relative algorithm
performance and achieved some success building a hybrid
around them, providing preliminary confirmation of H2 and
H3, but more work needs to be done to make the algorithm an
improvement over the state of the art and to develop a deeper
understanding of what makes the various recommenders
succeed or fail.

Immediate future work involves continuing to look for fea-
tures that will help us to select the appropriate recommender
to use, as well as investigating blending approaches using
hierarchical regressions (similar to FWLS), with the goal of
understanding what it is that makes particular algorithms
work well, where their individual weaknesses are, and how
to combine them into an effective ensemble.

User studies and qualitative investigation of the items and
users themselves will likely be helpful in further elucidating
the specific behavior of each algorithm. So far, our work has
focused only on generic statistics of users and items in the
rating set; seeing what actual items are being mispredicted
and collecting user feedback on erroneous predictions or bad
recommendations will hopefully provide further insight into
how the algorithms behave.

Systematic investigation of recommender failures has po-
tential to improve both our understanding of the workings

and characteristics of recommender algorithms and our ability
to successfully deploy them. By understanding when recom-
menders fail, we can know better what ones are most likely
to work well in particular situations and be more effective at
designing and deploying novel recommender systems finely
tuned to the particular demands of their domains and users.

Acknowledgements
Our colleagues in GroupLens Research, particularly Tony
Lam, Shilad Sen, and Aaron Halfaker, have provided invalu-
able assistance in this work. We also gratefully acknowledge
the support of the National Science Foundation under grants
IIS 10-17697 and 08-08692.

6. REFERENCES
[1] R. Burke. Hybrid recommender systems: Survey and

experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370, Nov. 2002.

[2] M. D. Ekstrand, P. Kannan, J. A. Stemper, J. T.
Butler, J. A. Konstan, and J. T. Riedl. Automatically
building research reading lists. In RecSys ’10, pages
159–166. ACM, 2010.

[3] M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T.
Riedl. Rethinking the recommender research ecosystem:
reproducibility, openness, and LensKit. In RecSys ’11,
pages 133–140. ACM, 2011.

[4] S. Funk. Netflix update: Try this at home.
http://sifter.org/˜simon/journal/20061211.html, Dec.
2006.

[5] A. Gunawardana and G. Shani. A survey of accuracy
evaluation metrics of recommendation tasks. J. Mach.
Learn. Res., 10:2935–2962, 2009.

[6] J. Herlocker, J. A. Konstan, and J. Riedl. An empirical
analysis of design choices in neighborhood-based
collaborative filtering algorithms. Inf. Retr.,
5(4):287–310, 2002.

[7] S. M. McNee, J. Riedl, and J. A. Konstan. Making
recommendations better: an analytic model for
human-recommender interaction. In CHI ’06 Extended
Abstracts, pages 1103–1108. ACM, 2006.

[8] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In KDD Cup
and Workshop 2007, Aug. 2007.

[9] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: an open architecture for
collaborative filtering of netnews. In ACM CSCW ’94,
pages 175–186. ACM, 1994.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In ACM WWW ’01, pages 285–295. ACM,
2001.

[11] J. Sill, G. Takacs, L. Mackey, and D. Lin.
Feature-Weighted linear stacking. arXiv:0911.0460,
Nov. 2009.

[12] R. Torres, S. M. McNee, M. Abel, J. A. Konstan, and
J. Riedl. Enhancing digital libraries with TechLens+.
In ACM/IEEE JCDL ’04, pages 228–236. ACM, 2004.

[13] A. Umyarov and A. Tuzhilin. Improving rating
estimation in recommender systems using aggregation-
and variance-based hierarchical models. In RecSys ’09,
pages 37–44, New York, New York, USA, 2009. ACM.

