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Abstract 
This research presents a model for an adaptable sy5  
tem that allows on-line switching of classes of a lge  
rithms for database transaction processing. The basic 
idea is to identify conditions on the state of process- 
ing that will maintain consistency during the switch 
from one class to another. The classes of concurrency 
control algorithms and the formalism of history for 
transaction processing and serializability have been 
used to develop this research. In addition to the for- 
malism, the precise conditions for switching digraph- 
serializable (DSR) algorithms have been given. This 
research is being applied to switching network par- 
tition protocols (conservative to optimistic), commit 
protocols, recovery block software, and has led to- 
wards the design of an adaptable and reconfigurable 
distributed database system. An experimental sys- 
tem called RAID has been implemented to  test these 
ideas and it has been noted that adaptability provides 
for varying performance requirements and deals with 
failures of sites, transactions, and other components 
of the system. 

1 Introduction 
Adaptability and reconfigurability are needed to 
deal with the performance and reliability require- 
ments of a system. Research on the recovery 
block scheme [Ran751 and on N-version programming 
[Avi76] has been focussed on switchable software for 
fault-tolerance. Much effort is underway to build soft- 
ware that can exploit newfound hardware flexibility, 
including parallel processing capabilities, to increase 
performance [KK86]. There are numerous choices of 
algorithms for concurrency control [BG81], network 
partition [DGS85], transaction commit/termination 
[SS83], database recovery [KohSl], etc. It has been 

*This research is supported in part by NASA, by Sperry 
Corporation and by a David Ross Fellowship. 

40 CH2550-2/88/0000/0040$01 .OO O 1988 IEEE 

found that certain algorithms for each of the above 
subsystems cooperate well to reduce bookkeeping, 
and to increase the efficiency of the implementation 
[Bha87]. For example, optimistic concurrency control 
methods work well with optimistic network partition 
treatment, log based database recovery mechanisms, 
and integrity checking systems in a distributed envi- 
ronment [Bha83]. 

Current distributed systems provide a rigid choice 
of algorithms for database software implementation. 
The design decisions are based on criteria such as 
computational complexity, simulations under limited 
assumptions, and empirical evidence. The desired life 
cycle of a system is at least several years. During such 
time new applications surface and the technology ad- 
vances, making earlier design choices less valid. In 
addition during a small period of time (within a 24 
hour period) a variety of load mixes, response time 
requirements and reliability requirements are encoun- 
tered. Different concurrency control and recovery al- 
gorithms are suitable for different load, performance, 
and reliability requirements [Bha84]. An adaptable 
distributed system can meet the various application 
needs in the short-term, and take advantage of ad- 
vances in technology over the years. Such a system 
will adapt to its environment during execution, and 
be reconfigurable for new applications or different 
performance or reliability requirements. 

In this paper we outline an approach to developing 
reconfigurable transaction systems software. Using 
these methods the algorithms of a transaction system 
can be switched without waiting for existing transac- 
tions to terminate. Some of the approaches require 
additional work to be done to transfer state informa- 
tion to the new algorithm before it can run on its 
own. While this state is being absorbed by the new 
algorithm, transaction processing can continue, and 
reliability benefits of the new, algorithm are immedi- 
ately available. 

Among the contributions of this paper are a formal- 
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ization of this conversion process, the specification of 
criteria sufficient to guarantee correctness during con- 
version, and a description of two implementations of 
these techniques as applied to concurrency control. 

This paper is divided into four major sections. In 
Section 2 we characterize the subsystems of a trans- 
action system as predicates on sequences of atomic 
actions. Based on this model we develop construc- 
tive methods for correctly switching between differ- 
ent algorithms for these subsystems. Section 3 de- 
scribes ways in which adaptability can be applied to 
the concurrency control subsystem, and describes a 
prototype implementation effort. Section 4 describes 
the special problems in applying adaptability tech- 
niques to distributed systems and suggests possible 
solutions. 

2 Methods for Adaptability 
This paper concentrates on adaptability methods in 
which an algorithm for a particular subsystem is com- 
pletely replaced with another algorithm. Thus we 
must model the system carefully enough to permit 
replacing one part of the system without affecting 
other parts. In this section we describe a particular 
model that applies in a natural way to many subsys- 
tems of a distributed system. A primary advantage 
of this model is that it provides for a clean interface 
between subsystems. 

2.1 History Sequencers 
Definition 1 A transaction is  a sequence of atomic 
act ions. 

The purpose of a transaction system is to process 
transactions efficiently while maintaining two atomic- 
ity conditions. Concurrency atomicity is the property 
that transactions cannot observe partial results of 
other transactions. Failure atomicity is the property 
that each transaction is terminated with either a com- 
mit or an abort. Transactions that commit must have 
executed to completion, and their results are guaran- 
teed to survive despite system failures. All evidence 
of an aborted transaction is completely removed from 
the system, and no other transaction that uses the re- 
sults of an aborted transaction may be committed. 

Definition 2 A history is a set of transactions and 
a total order on the union of the actions of  all of the 
transactions. The actions of  each transaction must be 
in the same order in the history that they are in their 
transaction, but may be intermingled with the actions 
of other transactions. 
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We will use the notation H o a to denote history 
H extended by action a. A partial history is like a 
history except that it is not required to include all of 
the actions of the transactions. Partial histories rep- 
resent systems that are in the process of running some 
transactions. Since this paper is focused on running 
systems, we shall use the term history interchange- 
ably with the term partial history. 

Many of the subsystems of a distributed system 
can be modelled as history sequencers. A sequencer 
is a function that takes as input a series of actions of 
a history and produces as output the same actions, 
possibly in a different order. To be practical, a se- 
quencer should be able to work on-line, in the sense 
that it should read the actions of the history in or- 
der, and produce output actions before it has read the 
complete history. The classic example of a history se- 
quencer is a locking concurrency controller. Actions 
are attempts to read or write database items, and 
the concurrency controller rearranges the actions us- 
ing its lock queues. 

The advantage of a history sequencer is that the 
history that it sequences provides a simple interface 
to the rest of the system. A sequencer can be re- 
placed at any time by another sequencer that serves 
the same function. The rest of the system still sees 
histories of the same form as before. The only observ- 
able differences will be in the form of different per- 
formance or reliability behavior. Unfortunately most 
sequencers develop state information as they oper- 
ate. For instance, a locking concurrency controller 
maintains queues of actions to determine the order 
in which actions should be executed. With incorrect 
or incomplete state information the concurrency con- 
troller will permit non-serializable executions. The 
rest of this section suggests various ways in which 
this state information can be manipulated to permit 
the replacement of a running sequencer with a new 
sequencer without stopping transaction execution. 

Let A and B be correct implementations of se- 
quencer S. Let c$ be a predicate on the output partial 
histories of S that returns true if the partial history is 
acceptable output from S. For instance, c$ for concur- 
rency controllers would be a function that determines 
whether the input partial history is a prefix of any se- 
rializable history. 

Definition 3 A n  adaptability method M is a pro- 
cess f o r  converting from A to  B without violating the 
correctness rules f o r  either A or B. M starts with A 
running and finishes with B running. It may itself 
serve as sequencer for some part of the input history, 
and may perform arbitrary computations involving A 
and B during the conversion. * 
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Definition 4 W e  say that an adaptability method M 
is valid for sequencer S if there are no histories that 
cause it t o  violate the correctness condition for se- 
quencer S. More formally, suppose M is valid and 
let H be a partial history consisting in order of the 
sub-sequences H A  that could be the output of A, H M  
that could be the output of M ,  and HB that could be 
the output of B. Then g ( H )  must be true. 

This is a general statement of the idea of validity 
for adaptability methods. Less general statements 
that avoid the need for q5 are tempting, but can eas- 
ily be reduced to the above form. In particular, it is a 
mistake to define validity to be output histories that 
could have been produced by some combination of 
methods A and B, since the most efficient adaptabil- 
ity methods that we know cannot be proven correct 
in this case. 

Note that predicates like q5 are usually too expen- 
sive to be implemented. Practical adaptability meth- 
ods such as those below may use q5 in their correctness 
proofs, but should not depend on it for the actual 
adaptation. 

2.2 Generic State 
The simplest approach conceptually is to develop a 
common data structure for all of the ways to imple- 
ment a particular sequencer. For network partition 
control, for instance, thia data structure would con- 
tain information on the configuration of the network, 
the data available in the local partition, and the data 
items in this partition which have been updated since 
the partition occurred. Under this strategy, switch- 
ing to a new algorithm is done simply by starting to 
pass actions through an implementation of the new 
algorithm. There is a subtlety here, though. Many 
algorithms have conditions on the preceding state as 
part of their correctness requirements. For example, 
a locking concurrency controller can only guarantee 
serializability if no lock is held by more than one ac- 
tive transaction. Optimistic concurrency controllers, 
on the other hand, permit multiple accesses to the 
same data item for improved concurrency. Thus se- 
rializability is not guaranteed if we switch from an 
optimistic concurrency controller to a locking con- 
currency controller, even if correct state information 
is available to both. This restriction shows up in the 
precondition to the following correctness theorem. 

Definition 5 A sequencer S is called generic state 
compatible if any two algorithms A and B for S are 
guaranteed t o  produce acceptable output if B is run 
after A using A's generic state. Formally, i f  A pro- 
duces as output'history H A  and B with the generic 

state from A after producing H A ,  produces history 
H B  then the history H A  o H B  is  acceptable output 
from S. 

Theorem 1 Let S be a generic state compatible se- 
quencer. Let M be the adaptability method for S that 
simply replaces an old algorithm with a new algo- 
rithm. Then M is a valid adaptability method. 

Proof. Suppose for purpose of contradiction that M 
is not a valid adaptability method. Then there is a 
history H = H A  o H M  o H B  not acceptable to S such 
that A outputs H A ,  M outputs H M ,  and B outputs 
H B .  In this case M outputs nothing so H = H A O H B .  
This is impossible since S is generic state compatible. 
Therefore M must be a valid adaptability method. 0 

Alternatively, a generic state adaptability method 
can be developed that works by aborting transac- 
tions to adjust the generic state information so that 
it could have been produced by the new algorithm. 
An important characteristic of sequencers for trans- 
action systems is that regardless of the transactions 
that have already been committed it is always possi- 
ble to adjust the currently executing transactions so 
that a new algorithm can correctly sequence them. 
This is easy to see since in the worst case we can sim- 
ply abort all active transactions, leaving the system 
in an initial state. Of course we are most interested 
in situations in which few active transactions must 
be aborted. Adjusting the generic state has the ad- 
vantage that it can work with sequencers that do not 
have the generic state compatibility property, but it 
requires additional effort in determining the set of 
transactions to be aborted. The correctness proof is 
similar to the above; most of the work lies in the def- 
inition of the state information to be passed to the 
new sequencer algorithm. 

The generic state method of adaptation has the 
advantages of simplicity and eBciency, but unfortu- 
nately it applies to only a small class of sequencers. 
Furthermore the requirement that a generic data 
structure exist for all algorithms for a sequencer is 
prohibitive. This is especially true since one of the 
advantages of adaptability is that it allows for the 
integration of future algorithms that have not been 
designed yet. Extending the generic state idea to ad- 
justing the state by aborting transactions is more flex- 
ible, but still requires the existence of a single data 
structure to maintain the state information for all 
possible algorithms for a sequencer. The next section 
proposes a method that further manipulates state in- 
formation to provide even more flexibility. 
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I 2.3 State Conversion 
In many cases the data maintained by different al- 
gorithms for a sequencer will contain the same in- 
formation in different forms. Sometimes it will not 
be feasible to use the same data structures for all of 
these algorithms for reasons of efficiency or compat- 
ibility, but it may be possible to convert the data 
between the different forms. This suggests an adapt- 
ability method that works by invoking a conversion 
routine to change the state information to the format 
required by the new algorithm. Notice that there is 
again the subtle problem that the new data structure 
must represent a situation that the new algorithm is 
able to correctly sequence, so we may have to abort 
some transactions in this approach also. 

The principal advantage of the state conversion 
adaptability method is that we are no longer required 
to have a single data representation for all algorithms. 
All that is needed to convert from algorithm A to al- 
gorithm B is a single routine that converts the data 
structures maintained by A to the data structures 
needed by B .  This is summed up in the following 
theorem. 

Theorem 2 Let A and B be algorithms for sequencer 
S such that there is a conversion algorithm from the 
data structure for A t o  the data structure for B as 
described above. Let M be the conversion method that 
converts from A to B by running the data conversion 
algorithm and then replacing A with E .  Then M is 
a valid conversion method. 

The proof is immediate from the definition of the 
conversion algorithm between the two data struc- 
tures. 

The state conversion adaptability method is ex- 
tremely flexible. It can be applied to sequencers that 
have a wide range of algorithms, and allows each al- 
gorithm to use the most efficient data structure for 
its own purposes. The major problem with the ap- 
proach is that a conversion algorithm is needed be- 
tween each pair of algorithms for the sequencer. This 
problem is exacerbated by the fact that correctness 
of the adaptation depends on correctness of the con- 
version algorithm. Thus to permit arbitrary adapta- 
tion for a sequencer for which n different algorithms 
have been implemented would require n2 conversion 
algorithms and n2 correctness proofs. One approach 
to alleviate this problem is to use a hybrid between 
the generic state and the state conversion methods. 
This approach would convert the old data structure 
to a canonical form and then convert from the canon- 
ical form to the data structure for the new algorithm. 
This would reduce the implementation effort to 2n 

I - - -  
- -  Method 4 - - -  

I ‘Method B 

HA HAB ! HW 
I - -  1 

Figure 1: The structure of histories accepted by the 
sue-sufficient adaptability method. 

conversion algorithms and correctness proofs. An 
even greater improvement would be an adaptability 
method for which the correctness proof depends only 
on the sequencer and not on the algorithms involved 
in adaptation. The next section explores one such 
approach. 

2.4 Suffix-sufficient State 
The basic observation used for the subsequent analy- 
sis is that an implementation of a sequencer will sel- 
dom have to refer to state information that is very old. 
This section presents a model within which proofs of 
such locality of reference are easy to  construct for 
some sequencers. 

The underlying idea is that during the adaptation 
process actions are permitted only when both the old 
and new algorithms for the sequencer permit them. 
The old algorithm A guarantees correctness of the 
“old” output history, and the new algorithm B per- 
mits actions to enter the “new” history only if B will 
be able to correctly complete the sequencing of their 
transactions. Figure 1 depicts the structure of these 
histories. The “old” history has a prefix H A  that is 
acceptable to method A. HAB is a part common to 
both “old” and “new” histories that is acceptable to 
both A and B .  The “new” history has a suffix H B  
that is acceptable to B. During creation of the HAB 
part of the history, algorithm B records enough state 
information to take over the sequencing job by itself. 
When this condition, called a suffix-sufficient state, 
is detected by the adaptation method, algorithm A is 
stopped, and only algorithm B continues. Of course, 
this approach can only succeed if the algorithms for 
the sequencer are likely to  permit actions in almost 
the same order. This is true in many cases, but will 
exact a performance penalty in other cases. 

Definition 6 A conversion termination condition 
for a sequencer S w‘th correctness condition 4 is 
a predicate p that determines whether adaptation i s  
complete. More formally, let M be the conversion 
method that works by running both A and B for an 
interim period and then replaces A with B.  If for any 
history H = H A  o HM o H B  such that H A  is  the out- 
put of A, H M  is the output of M ,  H B  i s  the output 
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of B and ~ ( H A , H M )  is  true # ( H )  is true, then p is  
a conversion termination condition for S. 

Remember that the theory behind the suffix- 
sufficient state conversion method is that if we wait 
long enough the new algorithm will have absorbed all 
of the important state information. p is a predicate 
that tells us when ‘long enough’ happens. 

Theorem 3 Let p be a conversion termination con- 
dition for sequencer S and let A and B be algorithms 
for S. Let M be the adaptation method that works b y  
running both A and B until p is satisfied (as above) 
and then replaces A with B. Then M is valid. 

Proof. Suppose M is not valid. Then there is a his- 
tory H = H A O H M O H B  not acceptable to S such that 
A outputs H A ,  M outputs H M ,  and B outputs H B  
with  HA, H M )  true. This contradicts the definition 
of p as a conversion termination condition. 

For sequencers for which there exist conversion 
termination conditions that are reasonably easy to 
implement this theorem provides an adaptability 
method that works for any possible algorithm. This 
is very much in the spirit of our approach to adapt- 
ability since it allows us to design the system in such 
a way that it is able to accommodate new algorithms 
as they are developed, and adapt to them dynam- 
ically in response to environmental conditions. An 
alternative would be to prove conversion termination 
theorems about adapting between each pair of algo- 
rithms. This is more flexible, but suffers from the 
disadvantage of the state conversion approach, i.e. a 
method must be proven correct and implemented for 
each pair of algorithms. 

A weakness of the suffix-sufficient state approach is 
that the conversion termination condition may not be 
guaranteed ever to be true. Even if the termination 
condition eventually becomes true we may spend a 
very long time with poor performance while trying 
to convert to the new algorithm. The next section 
suggests several ways by which we can achieve earlier 
termination of the conversion algorithm. 

simultaneously being absorbed through the current 
history and from state information about the old his- 
tory. In the state conversion method transaction pro- 
cessing must halt while the state information is be- 
ing transferred, but these new ideas simultaneously 
process actions and transfer state information. This 
amortizes the cost of the conversion over the cost of 
processing new actions. 

The simplest suggestion is to maintain a log of ac- 
tions as they are processed. When the conversion 
process is started it proceeds as in the suffix-sufficient 
state method in that both the old and new algorithms 
are simultaneously run. However, in addition to the 
actions that we want the algorithms to sequence, we 
also pass actions from the old history to the new al- 
gorithm. Since we will not ordinarily know how many 
of the old actions must be seen by the new algorithm 
they should be passed to it in reverse order. Includ- 
ing these actions in its state information will permit 
the conversion process to terminate earlier. Of course, 
once again it is possible that some of these old actions 
will belong to active transactions which may have to 
be aborted if the action is not acceptable to the new 
algorithm. 

Rather than pass the raw actions from the old his- 
tory, it is preferable to pass converted state informa- 
tion directly from the old algorithm if possible. This 
method works just like the last method, except that 
the state information is passed directly rather than 
through a log. The biggest advantage of this mod- 
ification is that the state information in the old al- 
gorithm is likely to be fairly small compared to the 
history information, so termination is likely to hap- 
pen more quickly. 

2.6 Comparison of Methods 
No one of these adaptability methods is best on all 
counts of simplicity, flexibility, and speed of adapta- 
tion. The generic state method has many advantages 
for sequencers for which there is an obvious choice for 
a flexible, efficient generic data structure. State con- 
version is more flexible, but is not suitable if there 

2.5 Suffix-sufficient State Amortized are many algorithms with different data structures, 
and has the additional implementation disadvantage 

This section consists of improvements to the suffix- 
sufficient state adaptability method. The intent of 
these improvements is to speed up the termination of 
the conversion process. Basically each of these ideas 
is a way in which state information can be transferred 
from the old algorithm to the new algorithm in par- 
allel with transaction processing. In a sense these 
are mixtures of the state conversion method and the 
suffix-sufficient state method. State information is 

of having many possible places for errors to occur. 
The suffix-sufficient state methods are the most gen- 
eral if a reasonable conversion termination condition 
can be determined. The basic suffix-sufficient state 
method has the advantage of not requiring any knowl- 
edge about the algorithms being converted to work 
successfully. The primary disadvantage is that termi- 
nation cannot be guaranteed, but the amortization 
techniques remedy the problem. 
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3 Adaptable Concurrency 
Control 

The generic state and converting state methods of 
adaptation apply to concurrency control with no 
change. This section concentrates on demonstrating 
that the suffix-sufficient state method can also be ap- 
plied. The section starts out with a description of the 
adaptability problem specific to concurrency control, 
and ends with a proof of correctness for a conversion 
termination condition for concurrency control. 

Concurrency controllers can be guaranteed to be 
correct if all transactions that run concurrently follow 
the same method. When methods are switched while 
the system is running, special care must be taken. 
Figure 2 is an example of how locking depends on 
the structure of the past history. In this example a 
concurrency controller implementing DSR had been 
running and it was removed from the system and re- 
placed by locking without appropriate preparation. 
Although both concurrency controllers made locally 
correct decisions, the combination permitted a non- 
serializable history. The techniques of Section 2 can 
be used to  permit adaptability while preserving cor- 
rectness. 

3.1 Conversion Termination Condi- 
tion 

In this sub-section we will see a conversion termina- 
tion condition that permits adaptation for all concur- 
rency controllers that accept subsets of the digraph- 
serializable histories, or DSR. This condition permits 
application of the suffix-sufficient state conversion 
method of adaptability between any two concurrency 
controllers in this class. Since DSR includes all known 
practical concurrency controllers this is an acceptable 
restrict ion. 

The first part of the restriction function is simple 
and intuitive. The intermediate part of the history, 
H M ,  is present to ensure that the transactions that 
were started under method A complete under method 
A. Thus H M  must extend until these transactions 
have all completed in order to guarantee the serializ- 
ability of H A O H M .  Part 2 of p is also simple but is less 
intuitive. The insight in the proof (below) is that if 
histories H A  o H M  and H M  o H B  are constructed care- 
fully, their conflict graphs will merge to produce the 
conflict graph for the entire history H A  o H M  o H B .  
Part 2 of p is a sufficient condition for this merged 
conflict graph to be acyclic, which will prove that the 
entire history accepted by the adaptable concurrency 
controller is serializable. 
Proof. Let G I  = ( V 1 , E l )  and G2 = (V2 ,E2)  be 
the conflict graphs for H A  o H M  and H M  o H B ,  re- 
spectively. The merged conflict graph is G = ( V , E )  
where V = VI U V2 and E = E1 U E2. It is easy to 
see that G is the conflict graph for H A  o H M  o H B ,  
since it includes all of the transactions and all of the 
conflict edges. In order to prove that the conversion 
is correct we must prove that the entire history is 
serializable or, equivalently, that the entire history 
has an acyclic serializability testing graph ([Pap791 
discusses STGs). We shall constructively exhibit an 
acyclic STG by showing that the conflict graph G is 
acyclic. 

Suppose, for purposes of contradiction, that G has 
a cycle. Since A and B are known to be correct con- 
currency controllers the cycle cannot be entirely con- 
tained in H A  o H M  or H M  o H B .  This means that the 
cycle must contain at least one transaction from H A  
and one from H B .  Call these transactions TA and 
TB respectively. We can choose names for the other 
transactions in the cycle and write it starting from 
TA as 

I 

Let M be the suffix-sufficient state conversion 
method of Section 2.4, and let H = H A  o H M  o H B .  
Recall that p is a function that determines when M is 

TA = Tl -, T2 -+ T3 -+ . . . -+ Tm-l -, T, = T’ -, 

Tm+l 3 . * *  -+ Tn-l -.+ Tn -+ TI = TA. 

done with the job of conversion, and must be specified 
for each sequencer. Notice that the second half of the cycle 

Theorem 4 Method M is a valid adaptability TB = T, + Tm+l + * .  . + Tn-l -+ Tn 4 TI = T A  
method for concurrency control methods contained 
in DSR under the conversion termination condition 
p ( H A ,  H M )  

is a path from H B  to H A ,  contradicting part of the 
definition of p from Theorem 4. 

This contradiction means that G must be acyclic. 
Since G is an acyclic STG for H A  o H M  o H E ,  the 
history must be serializable. Since the conversion 
method only permits serializable histories it is valid. 
0 

1. AI1 transactions started in H A  complete in H A  

2. is  no Path in the merged Conflict graph 
from a transaction in H B  to  a transaction in H A .  

o r H M ,  and 
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Figure 2: An example of an incorrect concurrency control decision caused by uncautious conversion. 

Action Meaning 
Beginmans( TkansID) 
EndTrans( TransID) 
Read(TransID, item) serialize read operation 
Write(TransID, item) serialize write operation 
CommitTrans( TransID) 
AbortTrans( TransID) 

initialize data structures for transaction 
terminate transaction; make commit/abort decision 

make the updates from this transaction permanent 
abort the transaction; discard its shadow pages or roll it back 

Figure 4: Input and output actions for the adaptable concurrency controller. 

n 

Figure 3: The organization of a prototype adaptable 
concurrency controller. 

3.2 Implement at ion 
We have used these ideas to implement a prototype 
adaptable concurrency controller. The design is in- 
tended to resemble a modern database system, ex- 
cept that the interface to the concurrency controller 
is carefully defined to permit a wide range of types 
of concurrency control. Figure 3 shows the organiza- 
tion of this prototype. In this model, a concurrency 
controller is a filter that takes in a sequence of ac- 
tions and produces a new sequence consisting only of 
actions in the original sequence. The input sequence 
can be arbitrary, but the output sequence must be se- 
rializable. The interface to our concurrency controller 
is described more precisely in Figure 4. This inter- 
face supports most known methods of concurrency 
control. For instance, a locking manager adds read 
or write actions to the appropriate lock queue. Then 
when the lock is released the action is sent back to 
the transaction manager to continue processing. On 
the other hand an optimistic concurrency controller 
would simply record a timestamp for each read or 
write action and return it to the transaction man- 

ager. Then when the EndTrans message arrived the 
concurrency controller would check for conflicts and 
send the appropriate commit or abort message. 

Basically the concurrency controller is a filter that 
each transaction manager must pass its transactions 
through before executing them. The recovery man- 
ager is a filter that the actions must go through before 
they are applied to the database. The advantage of 
this approach is that both the recovery manager and 
the concurrency controller need only to offer the ser- 
vices of read/write/abort/commit. Any implementa- 
tion is acceptable as long as the abstract view is the 
same. 

To merge several concurrency controllers into one 
adaptable concurrency controller we develop a new 
module that invokes the normal concurrency con- 
trollers for us. This program has the same interface as 
a normal concurrency controller except that it takes 
the additional command ChangeMethod(meth0d). 
Most of the time just one normal concurrency con- 
troller is executing so the adaptable concurrency con- 
troller simply passes the commands it receives to this 
concurrency controller and passes the results back to 
the transaction manager. But when a ChangeMethod 
command is received the adaptable concurrency con- 
troller has more work to do. First, it creates a process 
to run the new concurrency controller. Now each time 
it receives an action request it passes it to both the 
old and new concurrency controllers and adds it to a 
list of its own. Once both the old and new concurrency 
controllers have agreed to let the action be executed 
the adaptable concurrency controller will send it to 
the transaction manager. 
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4 Distributed Adaptability 
Adaptability is useful in the distributed environment 
also, although there are new problems in managing 
the state information and in coordinating the adapta- 
tion. In this section we will discuss several distributed 
subsystems that would benefit from adaptability, and 
consider some implementation ideas to extend adapt- 
ability to  the distributed environment. 

4.1 Network Partitioning Control 
Network partitioning control is the task of maintain- 
ing consistency in a distributed system despite some 
sites not being able to  communicate with other sites 
[DGS85]. The difficulty lies in permitting as much 
transaction processing as possible, so as to  minimize 
the impact of the partitioning. There are many solu- 
tions to this problem, falling broadly into the classes 
of optimistic and conservative methods. Optimistic 
methods work by permitting activity in all partitions, 
and resolving conflicts in a merge phase when the net- 
work is reconnected. Optimistic techniques are espe- 
cially good for very brief partitionings in which few 
conflicts are likely to occur. Conservative methods 
resolve the problem by permitting a restricted class 
of activity in each partition in order to guarantee that 
no conflicts occur. One popular method is to  assign a 
migrating token to  each file and only permit updates 
to a file if it is in the partition that has the token for 
the file. Let us see how the techniques of Section 2 
can be applied to  respond to  changing environmental 
conditions. 

Suppose the system normally runs an optimistic 
partitioning control algorithm because only brief net- 
work partitionings are likely. During a certain period 
the probability of very long partitionings becomes 
high, perhaps because of electrical storm activity or 
repair work. The system begins to set up the to- 
ken method, although the optimistic method must 
still take over if there is a partitioning. Once the 
token based method has distributed its tokens and is 
ready to handle a partitioning, the optimistic method 
is stopped. 

An alternative is to maintain a data structure 
which contains enough information for either method 
to be used. Then when a partitioning occurs the op- 
timistic method is used for the first few minutes, or 
until the partitioning is determined to be of long du- 
ration by some other criterion. Then a conversion al- 
gorithm is applied which rolls back any transactions 
which made changes that are not consistent with the 
distribution of tokens, and the token-based method 
is used for the duration of the partitioning. This 

method has the advantage of permitting adaptability 
even during a partitioning, but requires more state 
information to be maintained. 

4.2 Reconfiguration 
Another important problem in managing distributed 
systems is the reconfigurntion problem [PW85, chap- 
ter 51. Reconfiguration is the process of adding or 
deleting sites from a distributed system without vi- 
olating consistency. When a site leaves the system, 
either because of a failure or an administrative deci- 
sion, its transactions must be terminated. The data 
can be brought up to date using a multi-phase com- 
mit protocol in such a way that the rest of the system 
can continue processing transactions [Ske82]. When 
the site rejoins the system its data must be brought 
up to date. This can be done by making a copy of the 
data from another site, or by having the recovering 
site observe updates until it has fresh versions of all of 
the data items. These techniques can be combined by 
having the running sites record the data items that 
are modified while a site is down. When a site recov- 
ers it copies the list of updates that it missed. Then 
it only responds to read requests for items that are 
up to date, while recording updates on the other data 
items until it is fully recovered. 

4.3 Distributed Concurrency Control 
The concurrency controller implementation that we 
discussed in Section 3 filters actions through the con- 
currency controller as they are executed by the trans- 
action manager. The straight-forward extension to a 
distributed concurrency controller is to communicate 
actions between the sites as they occur. However, 
there is considerable advantage to grouping the ac- 
tions before they are distributed, since large packets 
are not much more expensive than smaller packets. 
The RAID distributed database system [BR86] uses 
a concurrency method called validation for this rea- 
son. Validation works by collecting timestamps for 
actions while a transaction is running and then dis- 
tributing the entire collection of timestamps for con- 
currency control checking after the transaction com- 
pletes. Each site checks for local concurrency con- 
flicts, and then the sites agree on a commit or abort 
decision. The local conflicts can be detected by check- 
ing the transaction against the history of committed 
transactions using methods ranging from locking to 
timestamp-based to conflict-graph cycle detection. In 
this way all of the actions for a transaction can be 
distributed in a single packet which greatly decreases 
communication costs. The tradeoff is that validation 
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may have to abort transactions that would have been 
safely scheduled by a conservative method such as 
locking. 

To avoid unnecessary abortion of long transactions 
an intermediate approach is possible. For instance, 
actions could be grouped in sets of ten or so for dis- 
semination to other sites, which could set locks on 
the corresponding items. Thus communications costs 
would decrease, but long transactions would not be 
at so much of a disadvantage for commitment. 

Validation concurrency control is very useful for 
adaptation because of the standard interface between 
the concurrency controllers and the rest of the sys- 
tem. In particular, the only requirement on each 10- 
cal concurrency controller is that it correctly check 
the transactions that are sent to it for serializabil- 
ity. This means that the techniques of Section 2 can 
be applied to the local concurrency controllers indi- 
vidually without need to coordinate with other sites. 
So it is possible to run B version of RAID in which 
each site is running a different type of concurrency 
controller, chosen based on the local environment. 
Thus validation can also be used to support heteroge- 
neous database systems, each of which is running its 
own concurrency controller. The only requirement is 
that each of the transaction managers preserves the 
timestamp information for transactions as it executes 
them. This information is passed to each of the local 
database systems which check it for validity. 

5 Conclusions 
5.1 Results 
In this paper we have developed concepts for mod- 
elling adaptability for a transaction system. The con- 
tributions of the paper include a model of an adapt- 
able subsystem and several methods for adapting be- 
tween different algorithms for one of these subsystems 
while the system is running. We also discussed im- 
plementation approaches for adaptable concurrency 
control. The first is based on providing an implemen- 
tation framework within which our adaptability tech- 
niques can be applied. The second suggests the con- 
cept of validation as a means of providing for adapt- 
ability in a distributed context. 

5.2 Experimental Effort 

(AM), Atomicity Controller (AC), Concurrency Con- 
troller (CC), and Recovery Controller (RC). U1 ac- 
cepts user’s requests expressed in a relational calcu- 
lus (INGRES-QUEL type) language and produces a 
transaction with several logical read/write actions. 
These actions are processed by AD which converts 
them into physical actions on the replicated copies 
of objects and communicates with AM’s for 1/0 and 
local AC for commitment of transactions across the 
distributed system. AM provides the implementation 
of atomic objects and works with the access manager 
to provide reliable reads and writes. AC validates 
transactions for local serializability with CC and com- 
municates with other AC’s for reliable commitment. 

Before posting the updates in the database, AD 
goes through the auditor that can use either a log 
or a differential-file based system. This mechanism 
provides the atomic object property. All sites in the 
system contain all six subsystems and can process 
local transactions independently and global transac- 
tions via the communication system that ties all the 
AC’s toget her. 

Currently the system provides two choices for the 
auditor/back-up system and six choices for the con- 
currency controller. Switching from one choice to an- 
other is done statically. The model presented in this 
paper has offered us guidelines for the successful de- 
velopment of adaptable protocols across a wide range 
of distributed algorithms. 

5.3 Expert System for Concurrency 
Controls 

We have developed an expert system that deter- 
mines when to switch to a new concurrency con- 
trol algorithm [BRW87]. The expert system uses a 
rule database describing relationships between per- 
formance data and algorithms. The rules are com- 
bined using a forward reasoning process to determine 
an indication of the suitability of the available algo- 
rithms for the current processing situation. Based on 
the current environment, it chooses a ‘best’ algorithm 
for the environment, along with an indication of how 
much better the new algorithm is than the currently 
running algorithm. The expert system also maintains 
a confidence (or “belief”) value in its reasoning pro- 
cess. This is used to avoid decisions that are suscep- 
tible to rapid change, or that are based on uncertain 
or old data. If the advantage of running the new al- 

RAID is an experimental distributed database sys- 
tem [BR86] being developed on VAXen and SUNS 
under the UNIX operating system (Figure 5 ) .  Cur- 
rently there are six major subsystems in RAID: User 
Interface (UI), Action Driver (AD), Access Manager 

gorithm is determined to be larger t h a i  the cost of 
adaptation, the expert system recommends switching 
to the new algorithm. 

Figure 6 shows a sample rule from the Prolog rule- 
base. Each value in a rule is specified as a pair, such 
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remote AMs 

remote ACs 

remot;  AM^ 

Figure 5: Raid Site Structure. 

as “Y - 2” .  The first element in this pair is the ac- 
tual value, and the second number is a belief (between 
0 and 1) in the correctness of the value. The belief 
is used in the condition uY i s s e a t e r  0.4 - 1’’ to 
trigger the rule only if Y is definitely greater than 0.4. 
The entire rule says that if the response time is be- 
tween 0.4 and 0.7 and if algorithm 5 is currently run- 
ning, then the percentage of update versus read-only 
transactions should be determined before the expert 
system continues. The expert system uses the belief 
values for the data items to establish a belief value 
for its reasoning process. 

5.4 Further Work 
One of the difficulties with adaptability techniques 
is that the advantages of converting to a better al- 
gorithm for a sequencer may be dominated by the 
cost of the conversion. We are currently developing a 
model of the costs and benefits of adaptability to de- 
termine in which situations the benefits outweigh the 
costs. Some of the factors that must be considered 
are: 

Costs of Adaptability 

- aborted transactions during conversion 
- expense of conversion protocol 
- decreased concurrency during conversion 

Benefits of Adaptability 

- improved overall system performance 

rule1 : if 
candidate X 

and 
response-time equals Y - Z 

and 
Y is4reater 0.4 - 1 

and 
Y isless-equal 0.7 - 1 

and 
alg5 - 1 

then 
update-readonly request R - V 

and 
update-readonly equals R - V 

with 
strength(1, 1) 

Figure 6: An example deduction rule in Prolog. 

49 

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore.  Restrictions apply. 



- flexibility to meet specific performance 

- fewer transactions will be aborted after con- 

- reliability may be increased by reacting to 

goals (e.g. maximize throughput) 

version 

adverse environmental conditions 

The experimental work will be used to validate this 
analytical work, and to provide values for vaious pa- 
rameters of the model. 

We expect this research to lead towards necessary 
and sufficient conditions for adaptability and recon- 
figurability of a complete transaction system. Sec- 
tion 2 establishes general methods for adapting a 
transaction system. These methods have been suc- 
cessfully applied to concurrency control, but hold 
promise for many other subsystems. 
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