
A Model for Adaptable Systems for Transaction Processing *

B harat B hargava
John Riedl

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907
(3 17)-494-6013

Abstract
This research presents a model for an adaptable sy5
tem that allows on-line switching of classes of a lge
rithms for database transaction processing. The basic
idea is to identify conditions on the state of process-
ing that will maintain consistency during the switch
from one class to another. The classes of concurrency
control algorithms and the formalism of history for
transaction processing and serializability have been
used to develop this research. In addition to the for-
malism, the precise conditions for switching digraph-
serializable (DSR) algorithms have been given. This
research is being applied to switching network par-
tition protocols (conservative to optimistic), commit
protocols, recovery block software, and has led to-
wards the design of an adaptable and reconfigurable
distributed database system. An experimental sys-
tem called RAID has been implemented to test these
ideas and it has been noted that adaptability provides
for varying performance requirements and deals with
failures of sites, transactions, and other components
of the system.

1 Introduction
Adaptability and reconfigurability are needed to
deal with the performance and reliability require-
ments of a system. Research on the recovery
block scheme [Ran751 and on N-version programming
[Avi76] has been focussed on switchable software for
fault-tolerance. Much effort is underway to build soft-
ware that can exploit newfound hardware flexibility,
including parallel processing capabilities, to increase
performance [KK86]. There are numerous choices of
algorithms for concurrency control [BG81], network
partition [DGS85], transaction commit/termination
[SS83], database recovery [KohSl], etc. It has been

*This research is supported in part by NASA, by Sperry
Corporation and by a David Ross Fellowship.

40 CH2550-2/88/0000/0040$01 .OO O 1988 IEEE

found that certain algorithms for each of the above
subsystems cooperate well to reduce bookkeeping,
and to increase the efficiency of the implementation
[Bha87]. For example, optimistic concurrency control
methods work well with optimistic network partition
treatment, log based database recovery mechanisms,
and integrity checking systems in a distributed envi-
ronment [Bha83].

Current distributed systems provide a rigid choice
of algorithms for database software implementation.
The design decisions are based on criteria such as
computational complexity, simulations under limited
assumptions, and empirical evidence. The desired life
cycle of a system is at least several years. During such
time new applications surface and the technology ad-
vances, making earlier design choices less valid. In
addition during a small period of time (within a 24
hour period) a variety of load mixes, response time
requirements and reliability requirements are encoun-
tered. Different concurrency control and recovery al-
gorithms are suitable for different load, performance,
and reliability requirements [Bha84]. An adaptable
distributed system can meet the various application
needs in the short-term, and take advantage of ad-
vances in technology over the years. Such a system
will adapt to its environment during execution, and
be reconfigurable for new applications or different
performance or reliability requirements.

In this paper we outline an approach to developing
reconfigurable transaction systems software. Using
these methods the algorithms of a transaction system
can be switched without waiting for existing transac-
tions to terminate. Some of the approaches require
additional work to be done to transfer state informa-
tion to the new algorithm before it can run on its
own. While this state is being absorbed by the new
algorithm, transaction processing can continue, and
reliability benefits of the new, algorithm are immedi-
ately available.

Among the contributions of this paper are a formal-

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

ization of this conversion process, the specification of
criteria sufficient to guarantee correctness during con-
version, and a description of two implementations of
these techniques as applied to concurrency control.

This paper is divided into four major sections. In
Section 2 we characterize the subsystems of a trans-
action system as predicates on sequences of atomic
actions. Based on this model we develop construc-
tive methods for correctly switching between differ-
ent algorithms for these subsystems. Section 3 de-
scribes ways in which adaptability can be applied to
the concurrency control subsystem, and describes a
prototype implementation effort. Section 4 describes
the special problems in applying adaptability tech-
niques to distributed systems and suggests possible
solutions.

2 Methods for Adaptability
This paper concentrates on adaptability methods in
which an algorithm for a particular subsystem is com-
pletely replaced with another algorithm. Thus we
must model the system carefully enough to permit
replacing one part of the system without affecting
other parts. In this section we describe a particular
model that applies in a natural way to many subsys-
tems of a distributed system. A primary advantage
of this model is that it provides for a clean interface
between subsystems.

2.1 History Sequencers
Definition 1 A transaction is a sequence of atomic
act ions.

The purpose of a transaction system is to process
transactions efficiently while maintaining two atomic-
ity conditions. Concurrency atomicity is the property
that transactions cannot observe partial results of
other transactions. Failure atomicity is the property
that each transaction is terminated with either a com-
mit or an abort. Transactions that commit must have
executed to completion, and their results are guaran-
teed to survive despite system failures. All evidence
of an aborted transaction is completely removed from
the system, and no other transaction that uses the re-
sults of an aborted transaction may be committed.

Definition 2 A history is a set of transactions and
a total order on the union of the actions of all of the
transactions. The actions of each transaction must be
in the same order in the history that they are in their
transaction, but may be intermingled with the actions
of other transactions.

41

We will use the notation H o a to denote history
H extended by action a. A partial history is like a
history except that it is not required to include all of
the actions of the transactions. Partial histories rep-
resent systems that are in the process of running some
transactions. Since this paper is focused on running
systems, we shall use the term history interchange-
ably with the term partial history.

Many of the subsystems of a distributed system
can be modelled as history sequencers. A sequencer
is a function that takes as input a series of actions of
a history and produces as output the same actions,
possibly in a different order. To be practical, a se-
quencer should be able to work on-line, in the sense
that it should read the actions of the history in or-
der, and produce output actions before it has read the
complete history. The classic example of a history se-
quencer is a locking concurrency controller. Actions
are attempts to read or write database items, and
the concurrency controller rearranges the actions us-
ing its lock queues.

The advantage of a history sequencer is that the
history that it sequences provides a simple interface
to the rest of the system. A sequencer can be re-
placed at any time by another sequencer that serves
the same function. The rest of the system still sees
histories of the same form as before. The only observ-
able differences will be in the form of different per-
formance or reliability behavior. Unfortunately most
sequencers develop state information as they oper-
ate. For instance, a locking concurrency controller
maintains queues of actions to determine the order
in which actions should be executed. With incorrect
or incomplete state information the concurrency con-
troller will permit non-serializable executions. The
rest of this section suggests various ways in which
this state information can be manipulated to permit
the replacement of a running sequencer with a new
sequencer without stopping transaction execution.

Let A and B be correct implementations of se-
quencer S. Let c$ be a predicate on the output partial
histories of S that returns true if the partial history is
acceptable output from S. For instance, c$ for concur-
rency controllers would be a function that determines
whether the input partial history is a prefix of any se-
rializable history.

Definition 3 A n adaptability method M is a pro-
cess f o r converting from A to B without violating the
correctness rules f o r either A or B. M starts with A
running and finishes with B running. It may itself
serve as sequencer for some part of the input history,
and may perform arbitrary computations involving A
and B during the conversion. *

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

Definition 4 W e say that an adaptability method M
is valid for sequencer S if there are no histories that
cause it t o violate the correctness condition for se-
quencer S. More formally, suppose M is valid and
let H be a partial history consisting in order of the
sub-sequences H A that could be the output of A, H M
that could be the output of M , and HB that could be
the output of B. Then g (H) must be true.

This is a general statement of the idea of validity
for adaptability methods. Less general statements
that avoid the need for q5 are tempting, but can eas-
ily be reduced to the above form. In particular, it is a
mistake to define validity to be output histories that
could have been produced by some combination of
methods A and B, since the most efficient adaptabil-
ity methods that we know cannot be proven correct
in this case.

Note that predicates like q5 are usually too expen-
sive to be implemented. Practical adaptability meth-
ods such as those below may use q5 in their correctness
proofs, but should not depend on it for the actual
adaptation.

2.2 Generic State
The simplest approach conceptually is to develop a
common data structure for all of the ways to imple-
ment a particular sequencer. For network partition
control, for instance, thia data structure would con-
tain information on the configuration of the network,
the data available in the local partition, and the data
items in this partition which have been updated since
the partition occurred. Under this strategy, switch-
ing to a new algorithm is done simply by starting to
pass actions through an implementation of the new
algorithm. There is a subtlety here, though. Many
algorithms have conditions on the preceding state as
part of their correctness requirements. For example,
a locking concurrency controller can only guarantee
serializability if no lock is held by more than one ac-
tive transaction. Optimistic concurrency controllers,
on the other hand, permit multiple accesses to the
same data item for improved concurrency. Thus se-
rializability is not guaranteed if we switch from an
optimistic concurrency controller to a locking con-
currency controller, even if correct state information
is available to both. This restriction shows up in the
precondition to the following correctness theorem.

Definition 5 A sequencer S is called generic state
compatible if any two algorithms A and B for S are
guaranteed t o produce acceptable output if B is run
after A using A's generic state. Formally, i f A pro-
duces as output'history H A and B with the generic

state from A after producing H A , produces history
H B then the history H A o H B is acceptable output
from S.

Theorem 1 Let S be a generic state compatible se-
quencer. Let M be the adaptability method for S that
simply replaces an old algorithm with a new algo-
rithm. Then M is a valid adaptability method.

Proof. Suppose for purpose of contradiction that M
is not a valid adaptability method. Then there is a
history H = H A o H M o H B not acceptable to S such
that A outputs H A , M outputs H M , and B outputs
H B . In this case M outputs nothing so H = H A O H B .
This is impossible since S is generic state compatible.
Therefore M must be a valid adaptability method. 0

Alternatively, a generic state adaptability method
can be developed that works by aborting transac-
tions to adjust the generic state information so that
it could have been produced by the new algorithm.
An important characteristic of sequencers for trans-
action systems is that regardless of the transactions
that have already been committed it is always possi-
ble to adjust the currently executing transactions so
that a new algorithm can correctly sequence them.
This is easy to see since in the worst case we can sim-
ply abort all active transactions, leaving the system
in an initial state. Of course we are most interested
in situations in which few active transactions must
be aborted. Adjusting the generic state has the ad-
vantage that it can work with sequencers that do not
have the generic state compatibility property, but it
requires additional effort in determining the set of
transactions to be aborted. The correctness proof is
similar to the above; most of the work lies in the def-
inition of the state information to be passed to the
new sequencer algorithm.

The generic state method of adaptation has the
advantages of simplicity and eBciency, but unfortu-
nately it applies to only a small class of sequencers.
Furthermore the requirement that a generic data
structure exist for all algorithms for a sequencer is
prohibitive. This is especially true since one of the
advantages of adaptability is that it allows for the
integration of future algorithms that have not been
designed yet. Extending the generic state idea to ad-
justing the state by aborting transactions is more flex-
ible, but still requires the existence of a single data
structure to maintain the state information for all
possible algorithms for a sequencer. The next section
proposes a method that further manipulates state in-
formation to provide even more flexibility.

42

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

I 2.3 State Conversion
In many cases the data maintained by different al-
gorithms for a sequencer will contain the same in-
formation in different forms. Sometimes it will not
be feasible to use the same data structures for all of
these algorithms for reasons of efficiency or compat-
ibility, but it may be possible to convert the data
between the different forms. This suggests an adapt-
ability method that works by invoking a conversion
routine to change the state information to the format
required by the new algorithm. Notice that there is
again the subtle problem that the new data structure
must represent a situation that the new algorithm is
able to correctly sequence, so we may have to abort
some transactions in this approach also.

The principal advantage of the state conversion
adaptability method is that we are no longer required
to have a single data representation for all algorithms.
All that is needed to convert from algorithm A to al-
gorithm B is a single routine that converts the data
structures maintained by A to the data structures
needed by B . This is summed up in the following
theorem.

Theorem 2 Let A and B be algorithms for sequencer
S such that there is a conversion algorithm from the
data structure for A t o the data structure for B as
described above. Let M be the conversion method that
converts from A to B by running the data conversion
algorithm and then replacing A with E . Then M is
a valid conversion method.

The proof is immediate from the definition of the
conversion algorithm between the two data struc-
tures.

The state conversion adaptability method is ex-
tremely flexible. It can be applied to sequencers that
have a wide range of algorithms, and allows each al-
gorithm to use the most efficient data structure for
its own purposes. The major problem with the ap-
proach is that a conversion algorithm is needed be-
tween each pair of algorithms for the sequencer. This
problem is exacerbated by the fact that correctness
of the adaptation depends on correctness of the con-
version algorithm. Thus to permit arbitrary adapta-
tion for a sequencer for which n different algorithms
have been implemented would require n2 conversion
algorithms and n2 correctness proofs. One approach
to alleviate this problem is to use a hybrid between
the generic state and the state conversion methods.
This approach would convert the old data structure
to a canonical form and then convert from the canon-
ical form to the data structure for the new algorithm.
This would reduce the implementation effort to 2n

I - - -
- - Method 4 - - -

I ‘Method B

HA HAB ! HW
I - - 1

Figure 1: The structure of histories accepted by the
sue-sufficient adaptability method.

conversion algorithms and correctness proofs. An
even greater improvement would be an adaptability
method for which the correctness proof depends only
on the sequencer and not on the algorithms involved
in adaptation. The next section explores one such
approach.

2.4 Suffix-sufficient State
The basic observation used for the subsequent analy-
sis is that an implementation of a sequencer will sel-
dom have to refer to state information that is very old.
This section presents a model within which proofs of
such locality of reference are easy to construct for
some sequencers.

The underlying idea is that during the adaptation
process actions are permitted only when both the old
and new algorithms for the sequencer permit them.
The old algorithm A guarantees correctness of the
“old” output history, and the new algorithm B per-
mits actions to enter the “new” history only if B will
be able to correctly complete the sequencing of their
transactions. Figure 1 depicts the structure of these
histories. The “old” history has a prefix H A that is
acceptable to method A. HAB is a part common to
both “old” and “new” histories that is acceptable to
both A and B . The “new” history has a suffix H B
that is acceptable to B. During creation of the HAB
part of the history, algorithm B records enough state
information to take over the sequencing job by itself.
When this condition, called a suffix-sufficient state,
is detected by the adaptation method, algorithm A is
stopped, and only algorithm B continues. Of course,
this approach can only succeed if the algorithms for
the sequencer are likely to permit actions in almost
the same order. This is true in many cases, but will
exact a performance penalty in other cases.

Definition 6 A conversion termination condition
for a sequencer S w‘th correctness condition 4 is
a predicate p that determines whether adaptation i s
complete. More formally, let M be the conversion
method that works by running both A and B for an
interim period and then replaces A with B. If for any
history H = H A o HM o H B such that H A is the out-
put of A, H M is the output of M , H B i s the output

43

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

of B and ~ (H A , H M) is true # (H) is true, then p is
a conversion termination condition for S.

Remember that the theory behind the suffix-
sufficient state conversion method is that if we wait
long enough the new algorithm will have absorbed all
of the important state information. p is a predicate
that tells us when ‘long enough’ happens.

Theorem 3 Let p be a conversion termination con-
dition for sequencer S and let A and B be algorithms
for S. Let M be the adaptation method that works b y
running both A and B until p is satisfied (as above)
and then replaces A with B. Then M is valid.

Proof. Suppose M is not valid. Then there is a his-
tory H = H A O H M O H B not acceptable to S such that
A outputs H A , M outputs H M , and B outputs H B
with HA, H M) true. This contradicts the definition
of p as a conversion termination condition.

For sequencers for which there exist conversion
termination conditions that are reasonably easy to
implement this theorem provides an adaptability
method that works for any possible algorithm. This
is very much in the spirit of our approach to adapt-
ability since it allows us to design the system in such
a way that it is able to accommodate new algorithms
as they are developed, and adapt to them dynam-
ically in response to environmental conditions. An
alternative would be to prove conversion termination
theorems about adapting between each pair of algo-
rithms. This is more flexible, but suffers from the
disadvantage of the state conversion approach, i.e. a
method must be proven correct and implemented for
each pair of algorithms.

A weakness of the suffix-sufficient state approach is
that the conversion termination condition may not be
guaranteed ever to be true. Even if the termination
condition eventually becomes true we may spend a
very long time with poor performance while trying
to convert to the new algorithm. The next section
suggests several ways by which we can achieve earlier
termination of the conversion algorithm.

simultaneously being absorbed through the current
history and from state information about the old his-
tory. In the state conversion method transaction pro-
cessing must halt while the state information is be-
ing transferred, but these new ideas simultaneously
process actions and transfer state information. This
amortizes the cost of the conversion over the cost of
processing new actions.

The simplest suggestion is to maintain a log of ac-
tions as they are processed. When the conversion
process is started it proceeds as in the suffix-sufficient
state method in that both the old and new algorithms
are simultaneously run. However, in addition to the
actions that we want the algorithms to sequence, we
also pass actions from the old history to the new al-
gorithm. Since we will not ordinarily know how many
of the old actions must be seen by the new algorithm
they should be passed to it in reverse order. Includ-
ing these actions in its state information will permit
the conversion process to terminate earlier. Of course,
once again it is possible that some of these old actions
will belong to active transactions which may have to
be aborted if the action is not acceptable to the new
algorithm.

Rather than pass the raw actions from the old his-
tory, it is preferable to pass converted state informa-
tion directly from the old algorithm if possible. This
method works just like the last method, except that
the state information is passed directly rather than
through a log. The biggest advantage of this mod-
ification is that the state information in the old al-
gorithm is likely to be fairly small compared to the
history information, so termination is likely to hap-
pen more quickly.

2.6 Comparison of Methods
No one of these adaptability methods is best on all
counts of simplicity, flexibility, and speed of adapta-
tion. The generic state method has many advantages
for sequencers for which there is an obvious choice for
a flexible, efficient generic data structure. State con-
version is more flexible, but is not suitable if there

2.5 Suffix-sufficient State Amortized are many algorithms with different data structures,
and has the additional implementation disadvantage

This section consists of improvements to the suffix-
sufficient state adaptability method. The intent of
these improvements is to speed up the termination of
the conversion process. Basically each of these ideas
is a way in which state information can be transferred
from the old algorithm to the new algorithm in par-
allel with transaction processing. In a sense these
are mixtures of the state conversion method and the
suffix-sufficient state method. State information is

of having many possible places for errors to occur.
The suffix-sufficient state methods are the most gen-
eral if a reasonable conversion termination condition
can be determined. The basic suffix-sufficient state
method has the advantage of not requiring any knowl-
edge about the algorithms being converted to work
successfully. The primary disadvantage is that termi-
nation cannot be guaranteed, but the amortization
techniques remedy the problem.

44

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

3 Adaptable Concurrency
Control

The generic state and converting state methods of
adaptation apply to concurrency control with no
change. This section concentrates on demonstrating
that the suffix-sufficient state method can also be ap-
plied. The section starts out with a description of the
adaptability problem specific to concurrency control,
and ends with a proof of correctness for a conversion
termination condition for concurrency control.

Concurrency controllers can be guaranteed to be
correct if all transactions that run concurrently follow
the same method. When methods are switched while
the system is running, special care must be taken.
Figure 2 is an example of how locking depends on
the structure of the past history. In this example a
concurrency controller implementing DSR had been
running and it was removed from the system and re-
placed by locking without appropriate preparation.
Although both concurrency controllers made locally
correct decisions, the combination permitted a non-
serializable history. The techniques of Section 2 can
be used to permit adaptability while preserving cor-
rectness.

3.1 Conversion Termination Condi-
tion

In this sub-section we will see a conversion termina-
tion condition that permits adaptation for all concur-
rency controllers that accept subsets of the digraph-
serializable histories, or DSR. This condition permits
application of the suffix-sufficient state conversion
method of adaptability between any two concurrency
controllers in this class. Since DSR includes all known
practical concurrency controllers this is an acceptable
restrict ion.

The first part of the restriction function is simple
and intuitive. The intermediate part of the history,
H M , is present to ensure that the transactions that
were started under method A complete under method
A. Thus H M must extend until these transactions
have all completed in order to guarantee the serializ-
ability of H A O H M . Part 2 of p is also simple but is less
intuitive. The insight in the proof (below) is that if
histories H A o H M and H M o H B are constructed care-
fully, their conflict graphs will merge to produce the
conflict graph for the entire history H A o H M o H B .
Part 2 of p is a sufficient condition for this merged
conflict graph to be acyclic, which will prove that the
entire history accepted by the adaptable concurrency
controller is serializable.
Proof. Let G I = (V 1 , E l) and G2 = (V2 ,E2) be
the conflict graphs for H A o H M and H M o H B , re-
spectively. The merged conflict graph is G = (V , E)
where V = VI U V2 and E = E1 U E2. It is easy to
see that G is the conflict graph for H A o H M o H B ,
since it includes all of the transactions and all of the
conflict edges. In order to prove that the conversion
is correct we must prove that the entire history is
serializable or, equivalently, that the entire history
has an acyclic serializability testing graph ([Pap791
discusses STGs). We shall constructively exhibit an
acyclic STG by showing that the conflict graph G is
acyclic.

Suppose, for purposes of contradiction, that G has
a cycle. Since A and B are known to be correct con-
currency controllers the cycle cannot be entirely con-
tained in H A o H M or H M o H B . This means that the
cycle must contain at least one transaction from H A
and one from H B . Call these transactions TA and
TB respectively. We can choose names for the other
transactions in the cycle and write it starting from
TA as

I

Let M be the suffix-sufficient state conversion
method of Section 2.4, and let H = H A o H M o H B .
Recall that p is a function that determines when M is

TA = Tl -, T2 -+ T3 -+ . . . -+ Tm-l -, T, = T’ -,

Tm+l 3 . * * -+ Tn-l -.+ Tn -+ TI = TA.

done with the job of conversion, and must be specified
for each sequencer. Notice that the second half of the cycle

Theorem 4 Method M is a valid adaptability TB = T, + Tm+l + * . . + Tn-l -+ Tn 4 TI = T A
method for concurrency control methods contained
in DSR under the conversion termination condition
p (H A , H M)

is a path from H B to H A , contradicting part of the
definition of p from Theorem 4.

This contradiction means that G must be acyclic.
Since G is an acyclic STG for H A o H M o H E , the
history must be serializable. Since the conversion
method only permits serializable histories it is valid.
0

1. AI1 transactions started in H A complete in H A

2. is no Path in the merged Conflict graph
from a transaction in H B to a transaction in H A .

o r H M , and

45

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

Figure 2: An example of an incorrect concurrency control decision caused by uncautious conversion.

Action Meaning
Beginmans(TkansID)
EndTrans(TransID)
Read(TransID, item) serialize read operation
Write(TransID, item) serialize write operation
CommitTrans(TransID)
AbortTrans(TransID)

initialize data structures for transaction
terminate transaction; make commit/abort decision

make the updates from this transaction permanent
abort the transaction; discard its shadow pages or roll it back

Figure 4: Input and output actions for the adaptable concurrency controller.

n

Figure 3: The organization of a prototype adaptable
concurrency controller.

3.2 Implement at ion
We have used these ideas to implement a prototype
adaptable concurrency controller. The design is in-
tended to resemble a modern database system, ex-
cept that the interface to the concurrency controller
is carefully defined to permit a wide range of types
of concurrency control. Figure 3 shows the organiza-
tion of this prototype. In this model, a concurrency
controller is a filter that takes in a sequence of ac-
tions and produces a new sequence consisting only of
actions in the original sequence. The input sequence
can be arbitrary, but the output sequence must be se-
rializable. The interface to our concurrency controller
is described more precisely in Figure 4. This inter-
face supports most known methods of concurrency
control. For instance, a locking manager adds read
or write actions to the appropriate lock queue. Then
when the lock is released the action is sent back to
the transaction manager to continue processing. On
the other hand an optimistic concurrency controller
would simply record a timestamp for each read or
write action and return it to the transaction man-

ager. Then when the EndTrans message arrived the
concurrency controller would check for conflicts and
send the appropriate commit or abort message.

Basically the concurrency controller is a filter that
each transaction manager must pass its transactions
through before executing them. The recovery man-
ager is a filter that the actions must go through before
they are applied to the database. The advantage of
this approach is that both the recovery manager and
the concurrency controller need only to offer the ser-
vices of read/write/abort/commit. Any implementa-
tion is acceptable as long as the abstract view is the
same.

To merge several concurrency controllers into one
adaptable concurrency controller we develop a new
module that invokes the normal concurrency con-
trollers for us. This program has the same interface as
a normal concurrency controller except that it takes
the additional command ChangeMethod(meth0d).
Most of the time just one normal concurrency con-
troller is executing so the adaptable concurrency con-
troller simply passes the commands it receives to this
concurrency controller and passes the results back to
the transaction manager. But when a ChangeMethod
command is received the adaptable concurrency con-
troller has more work to do. First, it creates a process
to run the new concurrency controller. Now each time
it receives an action request it passes it to both the
old and new concurrency controllers and adds it to a
list of its own. Once both the old and new concurrency
controllers have agreed to let the action be executed
the adaptable concurrency controller will send it to
the transaction manager.

46

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

4 Distributed Adaptability
Adaptability is useful in the distributed environment
also, although there are new problems in managing
the state information and in coordinating the adapta-
tion. In this section we will discuss several distributed
subsystems that would benefit from adaptability, and
consider some implementation ideas to extend adapt-
ability to the distributed environment.

4.1 Network Partitioning Control
Network partitioning control is the task of maintain-
ing consistency in a distributed system despite some
sites not being able to communicate with other sites
[DGS85]. The difficulty lies in permitting as much
transaction processing as possible, so as to minimize
the impact of the partitioning. There are many solu-
tions to this problem, falling broadly into the classes
of optimistic and conservative methods. Optimistic
methods work by permitting activity in all partitions,
and resolving conflicts in a merge phase when the net-
work is reconnected. Optimistic techniques are espe-
cially good for very brief partitionings in which few
conflicts are likely to occur. Conservative methods
resolve the problem by permitting a restricted class
of activity in each partition in order to guarantee that
no conflicts occur. One popular method is to assign a
migrating token to each file and only permit updates
to a file if it is in the partition that has the token for
the file. Let us see how the techniques of Section 2
can be applied to respond to changing environmental
conditions.

Suppose the system normally runs an optimistic
partitioning control algorithm because only brief net-
work partitionings are likely. During a certain period
the probability of very long partitionings becomes
high, perhaps because of electrical storm activity or
repair work. The system begins to set up the to-
ken method, although the optimistic method must
still take over if there is a partitioning. Once the
token based method has distributed its tokens and is
ready to handle a partitioning, the optimistic method
is stopped.

An alternative is to maintain a data structure
which contains enough information for either method
to be used. Then when a partitioning occurs the op-
timistic method is used for the first few minutes, or
until the partitioning is determined to be of long du-
ration by some other criterion. Then a conversion al-
gorithm is applied which rolls back any transactions
which made changes that are not consistent with the
distribution of tokens, and the token-based method
is used for the duration of the partitioning. This

method has the advantage of permitting adaptability
even during a partitioning, but requires more state
information to be maintained.

4.2 Reconfiguration
Another important problem in managing distributed
systems is the reconfigurntion problem [PW85, chap-
ter 51. Reconfiguration is the process of adding or
deleting sites from a distributed system without vi-
olating consistency. When a site leaves the system,
either because of a failure or an administrative deci-
sion, its transactions must be terminated. The data
can be brought up to date using a multi-phase com-
mit protocol in such a way that the rest of the system
can continue processing transactions [Ske82]. When
the site rejoins the system its data must be brought
up to date. This can be done by making a copy of the
data from another site, or by having the recovering
site observe updates until it has fresh versions of all of
the data items. These techniques can be combined by
having the running sites record the data items that
are modified while a site is down. When a site recov-
ers it copies the list of updates that it missed. Then
it only responds to read requests for items that are
up to date, while recording updates on the other data
items until it is fully recovered.

4.3 Distributed Concurrency Control
The concurrency controller implementation that we
discussed in Section 3 filters actions through the con-
currency controller as they are executed by the trans-
action manager. The straight-forward extension to a
distributed concurrency controller is to communicate
actions between the sites as they occur. However,
there is considerable advantage to grouping the ac-
tions before they are distributed, since large packets
are not much more expensive than smaller packets.
The RAID distributed database system [BR86] uses
a concurrency method called validation for this rea-
son. Validation works by collecting timestamps for
actions while a transaction is running and then dis-
tributing the entire collection of timestamps for con-
currency control checking after the transaction com-
pletes. Each site checks for local concurrency con-
flicts, and then the sites agree on a commit or abort
decision. The local conflicts can be detected by check-
ing the transaction against the history of committed
transactions using methods ranging from locking to
timestamp-based to conflict-graph cycle detection. In
this way all of the actions for a transaction can be
distributed in a single packet which greatly decreases
communication costs. The tradeoff is that validation

47

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

may have to abort transactions that would have been
safely scheduled by a conservative method such as
locking.

To avoid unnecessary abortion of long transactions
an intermediate approach is possible. For instance,
actions could be grouped in sets of ten or so for dis-
semination to other sites, which could set locks on
the corresponding items. Thus communications costs
would decrease, but long transactions would not be
at so much of a disadvantage for commitment.

Validation concurrency control is very useful for
adaptation because of the standard interface between
the concurrency controllers and the rest of the sys-
tem. In particular, the only requirement on each 10-
cal concurrency controller is that it correctly check
the transactions that are sent to it for serializabil-
ity. This means that the techniques of Section 2 can
be applied to the local concurrency controllers indi-
vidually without need to coordinate with other sites.
So it is possible to run B version of RAID in which
each site is running a different type of concurrency
controller, chosen based on the local environment.
Thus validation can also be used to support heteroge-
neous database systems, each of which is running its
own concurrency controller. The only requirement is
that each of the transaction managers preserves the
timestamp information for transactions as it executes
them. This information is passed to each of the local
database systems which check it for validity.

5 Conclusions
5.1 Results
In this paper we have developed concepts for mod-
elling adaptability for a transaction system. The con-
tributions of the paper include a model of an adapt-
able subsystem and several methods for adapting be-
tween different algorithms for one of these subsystems
while the system is running. We also discussed im-
plementation approaches for adaptable concurrency
control. The first is based on providing an implemen-
tation framework within which our adaptability tech-
niques can be applied. The second suggests the con-
cept of validation as a means of providing for adapt-
ability in a distributed context.

5.2 Experimental Effort

(AM), Atomicity Controller (AC), Concurrency Con-
troller (CC), and Recovery Controller (RC). U1 ac-
cepts user’s requests expressed in a relational calcu-
lus (INGRES-QUEL type) language and produces a
transaction with several logical read/write actions.
These actions are processed by AD which converts
them into physical actions on the replicated copies
of objects and communicates with AM’s for 1/0 and
local AC for commitment of transactions across the
distributed system. AM provides the implementation
of atomic objects and works with the access manager
to provide reliable reads and writes. AC validates
transactions for local serializability with CC and com-
municates with other AC’s for reliable commitment.

Before posting the updates in the database, AD
goes through the auditor that can use either a log
or a differential-file based system. This mechanism
provides the atomic object property. All sites in the
system contain all six subsystems and can process
local transactions independently and global transac-
tions via the communication system that ties all the
AC’s toget her.

Currently the system provides two choices for the
auditor/back-up system and six choices for the con-
currency controller. Switching from one choice to an-
other is done statically. The model presented in this
paper has offered us guidelines for the successful de-
velopment of adaptable protocols across a wide range
of distributed algorithms.

5.3 Expert System for Concurrency
Controls

We have developed an expert system that deter-
mines when to switch to a new concurrency con-
trol algorithm [BRW87]. The expert system uses a
rule database describing relationships between per-
formance data and algorithms. The rules are com-
bined using a forward reasoning process to determine
an indication of the suitability of the available algo-
rithms for the current processing situation. Based on
the current environment, it chooses a ‘best’ algorithm
for the environment, along with an indication of how
much better the new algorithm is than the currently
running algorithm. The expert system also maintains
a confidence (or “belief”) value in its reasoning pro-
cess. This is used to avoid decisions that are suscep-
tible to rapid change, or that are based on uncertain
or old data. If the advantage of running the new al-

RAID is an experimental distributed database sys-
tem [BR86] being developed on VAXen and SUNS
under the UNIX operating system (Figure 5) . Cur-
rently there are six major subsystems in RAID: User
Interface (UI), Action Driver (AD), Access Manager

gorithm is determined to be larger t h a i the cost of
adaptation, the expert system recommends switching
to the new algorithm.

Figure 6 shows a sample rule from the Prolog rule-
base. Each value in a rule is specified as a pair, such

48

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

remote AMs

remote ACs

remot; AM^

Figure 5: Raid Site Structure.

as “Y - 2” . The first element in this pair is the ac-
tual value, and the second number is a belief (between
0 and 1) in the correctness of the value. The belief
is used in the condition uY i s s e a t e r 0.4 - 1’’ to
trigger the rule only if Y is definitely greater than 0.4.
The entire rule says that if the response time is be-
tween 0.4 and 0.7 and if algorithm 5 is currently run-
ning, then the percentage of update versus read-only
transactions should be determined before the expert
system continues. The expert system uses the belief
values for the data items to establish a belief value
for its reasoning process.

5.4 Further Work
One of the difficulties with adaptability techniques
is that the advantages of converting to a better al-
gorithm for a sequencer may be dominated by the
cost of the conversion. We are currently developing a
model of the costs and benefits of adaptability to de-
termine in which situations the benefits outweigh the
costs. Some of the factors that must be considered
are:

Costs of Adaptability

- aborted transactions during conversion
- expense of conversion protocol
- decreased concurrency during conversion

Benefits of Adaptability

- improved overall system performance

rule1 : if
candidate X

and
response-time equals Y - Z

and
Y is4reater 0.4 - 1

and
Y isless-equal 0.7 - 1

and
alg5 - 1

then
update-readonly request R - V

and
update-readonly equals R - V

with
strength(1, 1)

Figure 6: An example deduction rule in Prolog.

49

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

- flexibility to meet specific performance

- fewer transactions will be aborted after con-

- reliability may be increased by reacting to

goals (e.g. maximize throughput)

version

adverse environmental conditions

The experimental work will be used to validate this
analytical work, and to provide values for vaious pa-
rameters of the model.

We expect this research to lead towards necessary
and sufficient conditions for adaptability and recon-
figurability of a complete transaction system. Sec-
tion 2 establishes general methods for adapting a
transaction system. These methods have been suc-
cessfully applied to concurrency control, but hold
promise for many other subsystems.

References
[Avi76]

[BG81]

[Bha83]

[Bha84]

[Bha87]

P M 6 1

A. Avizienis. Fault-tolerant systems.
IEEE Thnsact ions on Computers, C-
25(12):1304-1312, December 1976.

P. A. Bernstein and N. Goodman. Concur-
rency control in distributed database sys-
tems. Computing Surveys, 13(2):185-221,
1981.

Bharat Bhargava. Resilent concurrency
control in distributed database systems.
IEEE Tmnsactions on Reliability, 437-443,
December 1983.

Bharat Bhargava. Performance evalua-
tion of reliability control algorithms for dis-
tributed database systems. Journal of Sys-
tems and Software, 3:239-264, July 1984.

Bharat Bhargava, editor. Concurrency and
reliability in distributed systems. Van Nos-
trand and Reinhold, 1987.

Bharat Bhargava and John Riedl. The de-
sign of an adaptable distributed system.
In Proceedings of IEEE COMPSAC 86,
pages 114-122, October 1986.

[BRW87] Bharat Bhargava, John Riedl, and Detlef
Weber. A n Expert System to Control
an Adaptable Distributed Database Sys-
tem. Technical Report CSD-TR-693, Pur-
due University, May 1987.

[DGS85] Susan B. Davidson, Hector Garcia-Molina,
and Dale Skeen. Consistency in partitioned

networks. A C M Computing Surveys, 17(3),
September 1985.

S. Kartashev and S. Kartashev. Guest edi-
tor's introduction: Design for adaptability.
IEEE Computer, 9-15, February 1986.

[KK86]

[Koh81] W. H. Kohler. A survey of techiques for
synchronization and recovery in decentral-
ized computer systems. A M C Computing
Svrve ys, 13(2) :149-183, June 198 1.

C. H. Papadimitriou. The serializability of
concurrent database updates. Journal of
the A C M , 26(4):631-653, October 1979.

Gerald J. Popek and Bruce J. Walker. The
LOCUS Distributed System Architecture.
The MIT Press, 1985.

[Pap791

[PW85]

[Ran753 B. Randell. System structure for soft-
ware fault tolerance. IEEE Transactions
on Software Engineering, SE-1(2):220-232,
June 1975.

[Ske82] D. Skeen. Nonblocking commit proto-
cols. In Proceedings of the A C M SIG-
MOD Conference on Management of Data,
pages 133-147, Orlando, Florida, June
1982.

[SS831 D. Skeen and M. Stonebraker. A formal
model of crash recovery in a distributed
system. IEEE Transactions on Software
Engineering, SE-9(3), May 1983.

50

Authorized licensed use limited to: University of Minnesota. Downloaded on March 18, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

