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Abstract

We investigate the use of dimensionality reduction to
improve the performance for a new class of data anal-
ysis software called “recommender systems”. Recom-
mender systems apply knowledge discovery techniques
to the problem of making personalized product recom-
mendations during a live customer interaction. The
tremendous growth of customers and products in recent
years poses some key challenges for recommender sys-
tems. These are: producing high quality recommenda-
tions and performing many recommendations per sec-
ond for millions of customers and products. Singular
Value Decomposition(SVD)-based recommendation al-
gorithms can quickly produce high quality recommen-
dations, but has to undergo very expensive matrix fac-
torization steps. In this paper, we propose and experi-
mentally validate a technique that has the potential to
incrementally build SVD-based models and promises
to make the recommender systems highly scalable.

1 Introduction

Recommender systems have evolved in the extremely
interactive environment of the Web. They apply data
analysis techniques to the problem of helping customers
find which products they would like to purchase at E-
commerce sites. These systems, especially the collab-
orative filtering based ones [3, 5, 7, 8, 11], are rapidly
becoming a crucial tool in E-commerce on the Web.
Nowadays, they are being stressed by the huge volume
of customer data in existing corporate databases, and
will be stressed even more in future by the increasing
volume of customer data available on the Web. The
tremendous growth of customers and products poses
two key challenges for recommender systems. The first
challenge is to improve the quality of the recommenda-
tions for the consumers. Consumers need recommen-
dations they can trust to help them find products they
will like. If a consumer trusts a recommender system,
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purchases a product, and finds out he does not like
the product, the consumer will be unlikely to use the
recommender system again. Another challenge is to
improve the scalability of the collaborative filtering al-
gorithms. These algorithms are able to search tens of
thousands of potential neighbors in real-time, but the
demands of modern E-commerce systems are to search
tens of millions of potential neighbors.

In some ways these two challenges are in conflict,
since the less time an algorithm spends searching for
neighbors, the more scalable it will be, and the worse its
quality. For this reason, it is important to treat the two
challenges simultaneously so the solutions discovered
are both useful and practical. New technologies are
needed that can dramatically improve the scalability
of recommender systems. Researchers [1, 4, 9, 10] sug-
gest that Singular Value Decomposition (SVD) may be
such a technology in some cases. SVD-based approach
produced results that were better than a traditional
collaborative filtering algorithm most of the time when
applied to a Movie data set [9]. However, SVD-based
recommender systems suffer one serious limitation that
makes them less suitable for large-scale deployment in
E-commerce. The matrix factorization step associated
with these systems is computationally very expensive
and is a major stumbling block towards achieving high
scalability.

In this paper, we experiment with an incremen-
tal model-building technique for generating SVD-based
recommendations that has the promise of being highly
scalable while producing good predictive accuracy. In
particular, we present an algorithm that builds upon
a small pre-computed SVD model and provides larger
SVD models using inexpensive techniques. Our experi-
mental results suggest that the overall algorithm works
twice as fast while producing similar prediction accu-
racy.

The rest of the paper is organized as follows.
The next section gives a brief overview of the SVD-
based prediction generation process and discusses its
promises and challenges. Section 3 outlines our incre-
mental SVD algorithm. Section 4 presents our exper-
imental procedure, results and discussion. The final



section provides some concluding remarks and future
research directions.

2 Dimensionality Reduction for
Collaborative Filtering

In this section we briefly discuss how one dimensional-
ity reduction technique can potentially be used for pre-
diction generation. We then present some of the chal-
lenges of such algorithms and propose an incremental
technique to make them highly scalable.

2.1 Promises of Dimensionality Reduc-
tion

The goal of CF-based recommendation algorithms
[7, 8, 11] is to suggest new products or to predict the
utility of a certain product for a particular customer,
based on the customer’s previous liking and the opin-
ions of other like-minded customers. These systems
have been successful in several domains. However, in
our earlier papers [9, 10], we mentioned some limi-
tations of these systems, namely sparsity, scalability,
and synonymy. The weakness of CF algorithms for
large, sparse databases led us to explore alternative rec-
ommender system algorithms. After reviewing several
techniques, we decided to try applying Latent Seman-
tic Indexing (LSI) to reduce the dimensionality of our
customer-product ratings matrix. LSI is a dimension-
ality reduction technique that has been widely used in
information retrieval (IR) to solve the problems of syn-
onymy and polysemy [2]. LSI, which uses singular value
decomposition (SVD) as its underlying dimensionality
reduction algorithm, maps nicely into the collaborative
filtering recommender algorithm challenge.

Singular Value Decomposition (SVD). SVDisa
matrix factorization technique commonly used for pro-
ducing low-rank approximations. Given an m X n ma-

trix A, with rank r, the singular value decomposition,
SV D(A), is defined as

SVD(A)=Ux Sx VT (1)

Where U, S and V are of dimensions m X m,m X n,
and n X n, respectively. Matrix S is a diagonal matrix
having only r nonzero entries, which makes the effec-
tive dimensions of these three matrices m x r,r x r,
and r x n, respectively. U and V are two orthogonal
matrices and S is a diagonal matrix, called the singular
matriz. The diagonal entries (s1, s9,...,s,) of S have
the property that s; > 0 and s; > s > ... > s,. The
first  columns of U and V represent the orthogonal
eigenvectors associated with the r nonzero eigenvalues
of AAT and AT A, respectively. In other words, the
r columns of U corresponding to the nonzero singular
values span the column space, and the r columns of V

span the row space of the matrix A. U and V are called
the left and the right singular vectors, respectively.

SVD has an important property that makes it par-
ticularly interesting for our application. SVD provides
the best low-rank linear approximation of the original
matrix A. It is possible to retain only k < r singular
values by discarding other entries. We term this re-
duced matrix Sg. Since the entries in S are sorted i.e.,
$1 > 82 > ... > Sy, the reduction process is performed
by retianing the first k singular values. The matrices
U and V are also reduced to produce matrices Uy and
Vi, respectively. The matrix Uy, is produced by remov-
ing (r — k) columns from the matrix U and matrix Vj
is produced by removing (r — k) rows from the ma-
trix V. When we multiply these three reduced matri-
ces, we obtain a matrix Ag. The reconstructed matrix
A = Uk.Sk.VkT is a rank-k matrix that is the closest
approximation to the original matrix A. More specif-
ically, Ay minimizes the Frobenius norm ||A — Ag||r
over all rank-k matrices. Researchers [1, 2] pointed out
that the low-rank approximation of the original space is
better than the original space itself due to the filtering
out of the small singular values that introduce “noise”
in the customer-product relatioship.

The dimensionality reduction approach in SVD can
be very useful for the collaborative filtering process.
SVD produces a set of uncorrelated eigenvectors. Each
customer and product is represented by its correspond-
ing eigenvector. The process of dimensionality reduc-
tion may help customers who rated similar products
(but not exactly the same products) to be mapped into
the space spanned by the same eigenvectors. We now
present an outline of the prediction generation algo-
rithm using SVD (see [9] for details).

Prediction generation using SVD. Once the m x
n ratings matrix R is decomposed and reduced into
three SVD component matrices with k features Uy, Sk,
and Vj, prediction can be generated from it by com-
puting the cosine similarities (dot products) between

m pseudo-customers Uk.\/S_kT and n pseudo-products
VSi.V;I' [1]. In particular, the prediction score P;;
for the i-th customer on the j-th product by adding
the row average 7; to the similarity. Formally, P; ; =
T + Uk.\/S_kT(i).\/S_k.VkT(j) . Once the SVD decom-
position is done, the prediction generation process in-
volves only a dot product computation, which takes
O(1) time, since k is a constant.

2.2 Challenges of Dimensionality Re-
duction

In a typical recommender system, the entire algorithm
works in two separate steps. The first step is the off-
line or model-building step and the second step is the
on-line or the execution step. The user-user similarity
computation and neighborhood formation [10] can be
thought of as the off-line step of a CF system, whereas
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Figure 1: Schematic diagram of the SVD folding-in technique.

the actual prediction generation is the online step. Usu-
ally, the off-line component is very time-consuming and
is computed relatively infrequently. For instance, an e-
commerce site may compute the user-user similarity
only once a day or even once a week. This works well
if the ratings database is static and if the user behav-
ior does not change significantly over a short period of
time.

Researchers have demonstrated that the SVD-based
algorithms can make the neighborhood formation pro-
cess of CF systems highly scalable while producing bet-
ter results in most of the cases [4, 9, 10]. Despite the
good quality and excellent on-line performance SVD
based algorithms suffer a serious drawback—the off-
line SVD decomposition step is computationally very
expensive. For an m x n user-item matrix, the SVD de-
composition requires a run-time of O(m)? [1, 2]. Our
focus is to develop algorithms that ensure highly scal-
able overall performance. In order to achieve that goal,
we must ensure that both the online and the off-line
algorithms become more scalable. In the following sec-
tion, we devise an algorithm that makes the off-line
model building of SVD more scalable while achiev-
ing prediction quality comparable to the original SVD
scheme.

3 Incremental SVD Algorithms

SVD has a property that allows the model to be incre-
mentally computed. This method was used by the LSI
researchers [1, 2] to handle dynamic databases, where
new terms and documents may arrive once the model
is built. It was shown that a projection of additional
terms and documents can potentially provide a fairly
good approximation of the model. We extend this idea
to build a system where we first compute a suitably
sized model and then use the projection method to
build incrementally upon that. The resulting model is
not a perfect SVD model as the space is not orthogonal,
but the quality is expected to be good with potentially
high performance gain.

The Algorithm. The projection technique is known
as folding-in in SVD literature [1, 2]. To fold-in new
users into the space of already reduced user-item ma-

trix A, we compute the coordinates for that vector in
the basis Uy. Let the size of the new user vector N,
be t x 1. The first step in folding-in is to compute a
projection P that projects N, onto the space. Such a
projection P of N, is computed as:

P=U, x Ul x N,. (2)

This user set is then folded-in by appending the k
dimensional vector UkT .N,, as a new column of the k x d
matrix S;.V,!. Figure 1 shows a schematic diagram of
the folding-in approach.

The folding-in technique allows us to devise a model-
based approach for SVD-based prediction algorithms.
Folding-in is based on the existing model (Ug, Sk, and
Vi) and hence, new users or items do not affect ex-
isting user and items. In practice, it is possible to
pre-compute the SVD decomposition using m existing
users. For a user-item ratings matrix A, the three de-
composed matrix Uy, S and Vj are computed at first.
As described in the previous section, these matrices
can be used for prediction generation. However, when a
new set of ratings is added to the database, it is not nec-
essary to re-compute the low-dimensional model from
the scratch. We can take advantage of the folding-in
technique to build an incremental system that has the
potential to be highly scalable.

4 Experimental Evaluation

This section describes our experimental verification of
the incremental SVD algorithm. We first present our
experimental platform—the data set, the evaluation
metric, and the computational environment. Then we
present our experimental procedure followed by the re-
sults and discussion.

4.1 Experimental platform

Data set. We wused data from MovielLens
(www.movielens.umn.edu), which is our web-based
research recommender system that debuted in Fall
1997. We randomly selected enough users to obtain
100, 000 ratings from the database (we only considered
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Figure 2: Determination of the threshold basis size for folding-in based SVD system

users that had rated 20 or more movies). The data
set was converted into a user-movie matrix R that
had 943 rows(users) and 1682 columns (movies).
For our experiments, we divided the data set into a
training and a test portion. We varied the training
and test data ratio by using a parameter x, where
x = 0.8 means that 80% data was used for training
the algorithm and 20% was used as test.

Evaluation metric. For our experiments, we use
a widely popular statistical accuracy metric named
Mean Absolute Error (MAE), which is a measure of
the deviation of recommendations from their true user-
specified values [5, 11]. For each ratings-prediction pair
< pi,q; >, this metric treats the absolute error be-
tween them i.e., |p; — ¢;| equally. The MAE is com-
puted by first summing these absolute errors of the N
corresponding ratings-prediction pairs and then com-

N
puting the average. Formally, MAE = w.
The lower the MAE, the more accurately the recom-
mendation engine predicts user ratings.

Environment. All our experiments were done using
a combination of MATLAB and C, running on a Linux
platform. The machine had 650 MHz Intel Pentium

IIT CPU with 256 MB of RAM, and 512 KB of cache
memory.

4.2 Experimental Procedure

For this experiment, we use the prediction generation
algorithm using SVD described in [9], but instead of
computing the SVD model (decomposition of matrix
A into matrices U, S, and V) for all users, we use a
threshold size to build an initial model and then use
the folding-in technique to incrementally compute the
SVD model for additional users. Before performing
the prediction experiments, we first determine the opti-
mal values of our two experimental parameters—i) the

number of dimensions k, and ) the threshold model
size (basis size). We then perform the folding-in step
and generate predictions using the incremental model.
Finally, we investigate the performance implications of
the folding-in technique. We used 10—fold cross vali-
dation by selecting random training and test data for
all our experiments.

4.2.1 Values of experimental parameters

Optimal value of k. To determine the optimal value
of the number of dimension k, we performed an exper-
iment where we generated predictions using different
dimensions each time. We plotted our results and from
there obtained that 14 is the suitable value of k. For
the rest our experiments we use k = 14.

Optimal value of the basis size. Our goal is to
select a basis size that is small enough to produce fast
model building yet large enough to produce good pre-
diction quality. If we start with a very small basis
size, the entire model computation can be very fast,
but due to non-orthogonal spaces the prediction qual-
ity may not be good. On the other hand a large basis
size will defeat the purpose of incremental model build-
ing. We determined the optimal basis size through ex-
periments, where we first fix a basis size and compute
the SVD model by projecting the rest of (total — basis)
users using the folding-in technique. We start with a
model size of 100 and go up to 900 with an increment
of 100 at each step. Finally, we apply MAE to evaluate
the prediction quality. We observe from Figure 2 that
the quality of predictions improved as we increased the
basis size. We further noticed that after the basis size
crossed 600, the improvement in MAE values became
relatively small. From this observation, we select 600
to be our threshold basis size.
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Figure 3: Prediction quality of folding-in based algorithms

4.2.2 Results and Discussion

Prediction quality experiments. Figure 4(a)
plots the prediction quality results with the incremen-
tal model building using folding-in technique. We re-
port our results at three different training-test ratios—
at x = 0.2,0.5, and 0.8. For each experiment, we start
with a model size equal to the threshold basis size for
folding-in. Then we use the projection method to fold-
in the rest of (943 — basis) users onto the SVD space.
This process gives us an approximate SVD model for
943 users, where unlike the original SVD model the
component matrices U, .S, and V are not orthogonal.
We then use the component matrices to generate pre-
diction for a test set of ratings. We start with a model
size of 600 and go up to 900 with an increment of 50.

The plots of Figure 3 show that even with a small ba-
sis size it is possible to obtain a good quality. The MAE
value at z = 0.8, for example, is 0.733 for the full model
size and 0.742 for a model size of 600 (only 1.22% qual-
ity drop!). Similar numbers can also be found at other
x values. This suggests that the inexpensive projection
technique provides good quality even with a small basis
size.

Performance implications The observation from
Figure 4 that the quality does not change dramatically
with varying model size suggests that the SVD predic-
tion generation system can be made more scalable by
using the folding-in method. To investigate these scal-
ability impacts, we record the run-time in seconds for
each run and from there, we compute the throughput
performance metric. The throughput plot, presented
in Figure 4(b), shows the number of predictions gen-
erated per second at different basis sizes. From the
plot corresponding to x = 0.8 and the basis size of 600,
we have a test case size of (100,000 * (1 — 0.8)). This
means that our algorithm generates 20,000 ratings in
408.27 seconds, from there we obtain a throughput rate
of 88.82 recommendations per second. Accordingly, at

a full model size of 943 the throughput becomes 48.9
(81.63% performance gain!). This difference is even
more prominent at lower values of x, where the work-
load size is larger.

Overall, the folding-in technique shows the potential
to be very useful in addressing the scalability challenge
of SVD-based prediction generation systems. We have
demonstrated that although folding-in results in slight
quality loss due to the non-orthogonality of the resul-
tant space, it shows substantial performance gain.

5 Conclusion and Future Work

SVD-based recommendation generation technique
leads to very fast online performance, requiring just
a few simple arithmetic operations for each recommen-
dation but computing the SVD is very expensive. Use
of incremental SVD algorithms such as folding-in [1]
can significantly speed up the SVD computation cost
while providing comparable prediction quality. In this
paper, we have demonstrated that incremental SVD al-
gorithms, based on folding-in, can help recommender
systems achieve high scalability while providing good
predictive accuracy.

The folding-in technique requires less time and stor-
age space but can result in the loss of quality due to
the non-orthogonality of the incremental SVD space.
Researchers [1, 2] have pointed out techniques to in-
crementally update the space by retaining the orthog-
onality. This method is known as the SVD-update and
requires more time and memory than the folding-in
technique. Zha et al. [12] points out that the updating
technique described in [1] is, in fact, inaccurate and
they provide modified and very complex mathematical
technique to implement the updating technique they
claim to be more accurate. Implementation of this
technique remains as a future work.

Future work is required to understand exactly why
SVD works well for some recommender applications,
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and less well for others. Also, there are many other
ways in which SVD could be applied to recommender
systems problems, including using SVD to create low-
dimensional visualizations of the ratings space or using
SVD to identify significant products that would help
bootstrapping the recommender systems.
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