
Recommender Systems for Large-scale E-Commerce: Scalable

Neighborhood Formation Using Clustering

Badrul M. Sarwar†∗, George Karypis‡, Joseph Konstan†, and John Riedl†

{sarwar, karypis, konstan, riedl}@cs.umn.edu
†GroupLens Research Group / ‡Army HPC Research Center

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455, USA

Abstract

Recommender systems apply knowledge discovery tech-
niques to the problem of making personalized prod-
uct recommendations during a live customer interac-
tion. These systems, especially the k-nearest neigh-
bor collaborative filtering based ones, are achieving
widespread success in E-commerce nowadays. The
tremendous growth of customers and products in re-
cent years poses some key challenges for recommender
systems. These are: producing high quality recommen-
dations and performing many recommendations per
second for millions of customers and products. New
recommender system technologies are needed that can
quickly produce high quality recommendations, even
for very large-scale problems. We address the perfor-
mance issues by scaling up the neighborhood formation
process through the use of clustering techniques.

1 Introduction

The largest E-commerce sites offer millions of prod-
ucts for sale. Choosing among so many options is
challenging for consumers. Recommender systems have
emerged in response to this problem. A recommender
system for an E-commerce site recommends products
that are likely to fit her needs. Today, recommender
systems are deployed on hundreds of different sites,
serving millions of consumers. One of the earliest and
most successful recommender technologies is collabora-
tive filtering [5, 8, 9, 13]. Collaborative filtering (CF)
works by building a database of preferences for prod-
ucts by consumers. A new consumer, Neo, is matched
against the database to discover neighbors, which are
other consumers who have historically had similar taste
to Neo. Products that the neighbors like are then rec-
ommended to Neo, as he will probably also like them.
Collaborative filtering has been very successful in both
research and practice. However, there remain impor-
tant research questions in overcoming two fundamental

∗Currently with the Computer Science Department, San
Jose State University, San Jose, CA 95112, USA. Email:
sarwar@cs.sjsu.edu, Phone: +1 408-245-8202

challenges for collaborative filtering recommender sys-
tems.

The first challenge is to improve the scalability of the
collaborative filtering algorithms. These algorithms are
able to search tens of thousands of potential neighbors
in real-time, but the demands of modern E-commerce
systems are to search tens of millions of potential neigh-
bors. Further, existing algorithms have performance
problems with individual consumers for whom the site
has large amounts of information. For instance, if a
site is using browsing patterns as indications of prod-
uct preference, it may have thousands of data points
for its most valuable customers. These “long customer
rows” slow down the number of neighbors that can be
searched per second, further reducing scalability. The
second challenge is to improve the quality of the recom-
mendations for the consumers. Consumers need recom-
mendations they can trust to help them find products
they will like. If a consumer trusts a recommender sys-
tem, purchases a product, and finds out he does not like
the product, the consumer will be unlikely to use the
recommender system again. In some ways these two
challenges are in conflict, since the less time an algo-
rithm spends searching for neighbors, the more scalable
it will be, and the worse its quality. For this reason,
it is important to treat the two challenges simultane-
ously so the solutions discovered are both useful and
practical.

The focus of this paper is two-fold. First, we in-
troduce the basic concepts of a collaborative filter-
ing based recommender system and discuss its vari-
ous limitations. Second, we present a clustering-based
algorithm that is suited for a large data set, such as
those are common in E-commerce applications of rec-
ommender systems. This algorithm has characteristics
that make it likely to be faster in online performance
than many previously studied algorithms, and we seek
to investigate how the quality of its recommendations
compares to other algorithms under different practical
circumstances.

The rest of the paper is organized as follows. The
next section provides a brief overview of collabora-
tive filtering based recommender systems and discusses

C1

C2

Ca

Cm

.

.

.

.

P1 P2
Pj Pn. . . .

Input (ratings table)
Active customer

Product for which
prediction is sought

Prediction

Recommendation

CF-Algorithm

Ra,j (prediction on
product j for the
active customer)

{Tp1, Tp2, ..., T pN} Top-N
list of products for the

active customer

Output interface

Figure 1: The Collaborative Filtering Process.

some of its limitations. Section 3 describes the details
algorithm of applying clustering based approach to ad-
dress these limitations. Section 4 describes our exper-
imental framework, experimental results, and discus-
sion. The final section provides some concluding re-
marks and directions for future research.

2 Collaborative Filtering-based
Recommender Systems

Collaborative filtering (CF) [8, 9, 13] is the most suc-
cessful recommender system technology to date, and is
used in many of the most successful recommender sys-
tems on the Web. CF systems recommend products to
a target customer based on the opinions of other cus-
tomers. These systems employ statistical techniques to
find a set of customers known as neighbors, that have
a history of agreeing with the target user (i.e., they
either rate different products similarly or they tend to
buy similar set of products). Once a neighborhood of
users is formed, these systems use several algorithms
to produce recommendations.

In a typical E-Commerce scenario, there is a list of
m customers C = {c1, c2, . . . , cm} and a list of n prod-
ucts P = {p1, p2, . . . , pn}. Each customer ci expresses
his/her opinions about a list of products. This set of
opinions is called the “ratings” of customer ci and is
denoted by Pci . There exists a distinguished customer
ca ∈ C called the active customer for whom the task of
a collaborative filtering algorithm is to find a product
suggestion.

Most collaborative filtering based recommender sys-
tems build a neighborhood of likeminded customers.
The Neighborhood formation scheme usually uses Pear-
son correlation or cosine similarity as a measure of
proximity [13]. The neighborhood formation process is
in fact the model-building or learning process for a rec-
ommender system algorithm. The main goal of neigh-
borhood formation is to find, for each customer C, an
ordered list of k customers N= {N1, N2, . . . , Nk} such
that C �∈ N and sim(C, N1) is maximum, sim(C, N2)
is the next maximum and so on. Where sim(C, Ni)
indicates similarity between two customers, which is

most often computed by finding the Pearson-r correla-
tion between the customers C and Ni.

Once these systems determine the proximity neigh-
borhood, they produce recommendations that can be
of two types:

• Prediction is a numerical value, Ra,j, expressing
the predicted opinion-score of product pj for the
active customer ca. This predicted value is within
the same scale (e.g., from 1 to 5) as the opinion
values provided by ca.

• Recommendation is a list of N products, TPr =
{Tp1, Tp2, . . . , TpN}, that the active user will like
the most. The recommended list usually consists
of the products not already purchased by the ac-
tive customer. This output interface of CF algo-
rithms is also known as Top-N recommendation.

Figure 1 shows the schematic diagram of the collab-
orative filtering process. CF algorithms represent the
entire m × n customer-product data as a ratings ma-
trix, A. Each entry ai,j in A represent the preference
score (ratings) of the ith customer on the jth product.
Each individual rating is within a numerical scale and
it can as well be 0, indicating that the customer has
not yet rated that product.

These systems have been successful in several do-
mains, but the algorithm is reported to have shown
some limitations, such as:

• Sparsity. Nearest neighbor algorithms rely upon
exact matches that cause the algorithms to sac-
rifice recommender system coverage and accuracy
[8, 11]. In particular, since the correlation coeffi-
cient is only defined between customers who have
rated at least two products in common, many pairs
of customers have no correlation at all [1]. Accord-
ingly, Pearson nearest neighbor algorithms may be
unable to make many product recommendations
for a particular user. This problem is known as
reduced coverage, and is due to sparse ratings of
neighbors.

• Scalability. Nearest neighbor algorithms require
computation that grows with both the number of

Complete dataset (based on the
user-user similarity)

Dataset after application
of the clustering algorithm

User cluster is used as
the neighborhood

Active user

Figure 2: Neighborhood formation from clustered partitions

customers and the number of products. With mil-
lions of customers and products, a typical web-
based recommender system running existing algo-
rithms will suffer serious scalability problems.

The weakness of Pearson nearest neighbor approach
for large, sparse databases led us to explore alternative
recommender system algorithms. Our first approach
attempted to bridge the sparsity by incorporating semi-
intelligent filtering agents into the system [11]. We
addressed the scalability challenge in an earlier work
[12], where we showed that forming neighborhoods in
the low dimensional eigen-space provided better quality
and performance. Here we present a different dimen-
sionality reduction approach by first clustering the data
set and then forming neighborhoods form the parti-
tions. The application of clustering techniques reduces
the sparsity and improves scalability of recommender
systems. Clustering of users can effectively partition
the ratings database and thereby improve the scala-
bility and sparsity. Earlier studies [2, 8, 15] indicate
the benefits of applying clustering in recommender sys-
tems. We outline our research approach in the next
section.

3 Scalable Neighborhood Using
Clustering

Clustering techniques work by identifying groups of
users who appear to have similar preferences. Once the
clusters are created, predictions for an individual can
be made by averaging the opinions of the other users
in that cluster. Some clustering techniques represent
each user with partial participation in several clusters.
The prediction is then an average across the clusters,
weighted by degree of participation. Clustering tech-
niques usually produce less-personal recommendations
than other methods and most often lead to worse ac-
curacy than nearest neighbor algorithms [3]. Once the
clustering is complete, however, performance can be

very good, since the size of the group that must be
analyzed is much smaller.

3.1 Scalable Neighborhood Algorithm

The idea is to partition the users of a collaborative
filtering system using a clustering algorithm and use
the partitions as neighborhoods. Figure 2 explains
this idea. A collaborative filtering algorithm using
this idea first applies a clustering algorithm on the
user-item ratings database to divide the database
A into p partitions. The clustering algorithm may
generate fixed sized partitions, or based on some sim-
ilarity threshold it may generate a requested number
of partitions of varying size. In the next step, the
neighborhood for the active customer ca is selected by
looking into the partition where he/she belongs. The
entire partition, Ai is then used as the neighborhood
for that active customer ca. Prediction is generated
using basic collaborative filtering technique. We now
present the algorithm formally.

Algorithm: Clustered neighborhood forma-
tion

1. Apply the clustering algorithm to produce p parti-
tions of users using the training data set. Formally,
the data set A is partitioned in A1, A2, . . . , Ap,
where Ai ∩ Aj = φ, for 1 ≤ i, j ≤ p; and
A1 ∪ A2 ∪ . . . ∪ Ap = A.

2. Determine the neighborhood for a given user u. If
u ∈ Ai then the entire partition Ai is used as the
neighborhood.

3. Once the neighborhood is obtained, classical col-
laborative filtering algorithm is used to generate
prediction from that. In particular, the prediction
score Ra,j for a customer ca on product pj is com-
puted by using the following formula [9].

Ra,j = ¯PCa +

∑
i rates j (PCi,j − P̄Ci)ra,i

∑
i |ra,i| (1)

Prediction quality: Clustering vs. CF

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

10 20 30 40 50 60 70 80 90 100
No. of clusters

M
A

E
Clust CF

Figure 3: Quality of prediction using clustered-neighborhood vs. classical CF-neighborhood approach

where ra,i denotes the correlation between the ac-
tive user Ca and its neighbors Ci who have rated
the product Pj . ¯PCa denotes the average ratings
of customer Ca, and PCi,j denotes the rating given
by customer Ci on product Pj .

This method has two benefits—first, it reduces the
sparsity of the data set and second, due to the dimen-
sionality reduction and use of a static pre-computed
neighborhood, the prediction generation is much faster.

4 Experimental Evaluation

In this section we present a brief discussion of our ex-
perimental data set, evaluation metric, and experimen-
tal platform followed by the experimental results and
discussion.

4.1 Data Sets

We used data from our recommender system Movie-
Lens (www.movielens.umn.edu), which is a web-based
research recommender system that debuted in Fall
1997. Each week hundreds of users visit MovieLens
to rate and receive recommendations for movies. The
site now has over 50, 000 users who have expressed
opinions on 3, 000+ different movies. We randomly se-
lected enough users to obtain 100, 000 ratings from the
database (we only considered users that had rated 20 or
more movies). We divided the database into 80% train-
ing set and 20% test set. The data set was converted
into a user-movie matrix R that had 943 rows(users)
and 1682 columns(movies that were rated by at least
one of the users).

4.2 Evaluation Metrics

Recommender systems researchers use a number of dif-
ferent measures for evaluating the success of the rec-
ommendation or prediction algorithms [13, 11]. For
our experiments, we use a widely popular statistical

accuracy metric named Mean Absolute Error (MAE),
which is a measure of the deviation of recommenda-
tions from their true user-specified values. For each
ratings-prediction pair < pi, qi >, this metric treats
the absolute error between them i.e., |pi − qi| equally.
The MAE is computed by first summing these absolute
errors of the N corresponding ratings-prediction pairs
and then computing the average. Formally, MAE =∑N

i=1
|pi−qi|

N , The lower the MAE, the more accurately
the recommendation engine predicts user ratings.

Our choice of MAE as the primary accuracy metric
is due to the fact that it matches the goals of our ex-
periments most closely. MAE is most commonly used
and easiest to interpret directly. There is a vast re-
search literature on performing statistical significance
testing and computing confidence intervals for MAE.
Furthermore, researchers [5] in the related field have
also suggested the use of MAE for prediction evalua-
tion metric.

4.3 Experimental Procedure

Benchmark CF system. To compare the perfor-
mance of item-based prediction we also entered the
training ratings set into a collaborative filtering rec-
ommendation engine that employs the Pearson nearest
neighbor algorithm. We tuned the algorithm to use the
best published Pearson nearest neighbor algorithm and
configured it to deliver the highest quality prediction
without concern for performance (i.e., it considered ev-
ery possible neighbor to form optimal neighborhoods).

Experimental platform. All our experiments were
implemented using C and compiled using optimization
flag −06. We ran all our experiments on a Linux based
workstation with dual Intel Pentium III processors hav-
ing a speed of 600 MHz and 2GB of RAM.

Experimental steps. To experimentally evaluate
the effectiveness of clustering, we use a variant of K-

Throughput: Clustering vs. CF

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80 90 100
No. of clusters

T
h

ro
u

g
h

p
u

t
(r

ec
s.

/s
ec

)
Clust CF

Figure 4: Throughput of clustered-neighborhood vs. classical CF-neighborhood approach.

means [7] clustering algorithm called the bisecting K-
means clustering algorithm. This algorithm is fast and
tends to produce clusters of relatively uniform size,
which results in good cluster quality [14]. We divide
the movie data set into a 80% training and 20% test
portion. For the purpose of comparison, we perform
the same experiments using our benchmark CF-based
recommender system. We use the same train/test ratio
x, and number of neighbors. In case of the clustering
approach, the number of neighbors is not always fixed;
one cluster may have 30 users, another one may have
55 user and so on. To make our comparisons fair, we
recorded the number of neighbors used for prediction
computation for each user and forced our basic CF al-
gorithm to use same number of neighbors for prediction
generation. We evaluated the results using the MAE
metric and also noted the run time elapsed in seconds.
We conducted a 10-fold cross validation of our experi-
ments by randomly choosing different training and test
sets each time and taking the average of the MAE and
run time values.

4.4 Results and Discussion

Figure 3 presents the prediction quality results of our
experiments for the clustering as well as basic CF tech-
niques. In this chart, prediction quality is plotted as a
function of the number of clusters. We make two im-
portant observations from this chart. First, the predic-
tion quality is worse in case of the clustering algorithm
but the difference is small. For instance, using 10 clus-
ters, the clustered approach yields an MAE of 0.7665
and the corresponding CF algorithm yields an MAE of
0.7455. It can also be observed from the chart that as
we increase the number of clusters the quality tends to
be inferior (increased MAE). In case of clustering it is
expected as with a fixed number of users, increasing
the number of clusters would mean small cluster sizes
and hence small number of neighbors to have opinions
about items. The same trend is observed in the case of
basic CF as we force them to use the same number of

neighbors as the clustered approach.
Figure 4 presents the performance results of our ex-

periments for both of the techniques. We plot the
throughput as a function of the cluster size. We define
throughput of a recommender system as the number of
recommendations generated per second. From the plot
we see that using the clustered approach, the through-
put is substantially higher than the basic CF approach.
This is due to the reason that with the clustered ap-
proach the prediction algorithm has to use a fraction of
neighbors. The throughput increases rapidly with the
increase in the number of clusters (small cluster sizes).
Since the basic CF method has to scan through all the
neighbors, the number of clusters does not impact the
throughput.

5 Conclusion and Future Work

Recommender systems are a powerful new technology
for extracting additional value for a business from its
customer databases. These systems help customers
find products they want to buy from a business. Rec-
ommender systems benefit customers by enabling them
to find products they like. Conversely, they help the
business by generating more sales. Recommender sys-
tems are rapidly becoming a crucial tool in E-commerce
on the Web. Recommender systems are being stressed
by the huge volume of customer data in existing corpo-
rate databases, and will be stressed even more by the
increasing volume of customer data available on the
Web. New technologies are needed that can dramati-
cally improve the scalability of recommender systems.

In this paper, we presented and experimentally eval-
uated a new approach in improving the scalability of
recommender systems by using clustering techniques.
Our experiments suggest that clustering based neigh-
borhood provides comparable prediction quality as the
basic CF approach and at the same time significantly
improves the online performance.

We demonstrated the effectiveness of one particu-

lar clustering algorithm (bisecting k-means algorithm).
In future, better clustering algorithms as well as bet-
ter prediction generation schemes can be used to im-
prove the prediction quality. Clustering techniques can
also be applied as a “first step” for shrinking the can-
didate set in a nearest neighbor algorithm or for dis-
tributing nearest-neighbor computation across several
recommender engines. While dividing the population
into clusters may hurt the accuracy or recommenda-
tions to users near the fringes of their assigned cluster,
pre-clustering may be a worthwhile trade-off between
accuracy and throughput.

6 Acknowledgments

Funding for this research was provided in part by the
National Science Foundation under grants IIS 9613960,
IIS 9734442, and IIS 9978717 with additional fund-
ing by Net Perceptions Inc. This work was also sup-
ported by NSF CCR-9972519, by Army Research Office
contract DA/DAAG55-98-1-0441, by the DOE ASCI
program and by Army High Performance Computing
Research Center contract number DAAH04-95-C-0008.
Access to computing facilities was provided by AH-
PCRC, Minnesota Supercomputer Institute. We also
thank anonymous reviewers for their valuable com-
ments.

References

[1] Billsus, D., and Pazzani, M. J. (1998). Learning
Collaborative Information Filters. In Proceedings
of ICML ’98. pp. 46-53.

[2] Borchers, A., Leppik, D., Konstan, J., and Riedl,
J. (1998). Partitioning in Recommender Systems.
Technical Report CS-TR-98-023, Computer Sci-
ence Dept., University of Minnesota.

[3] Breese, J. S., Heckerman, D., and Kadie, C.
(1998). Empirical Analysis of Predictive Algo-
rithms for Collaborative Filtering. In Proceedings
of the 14th Conference on Uncertainty in Artificial
Intelligence, pp. 43-52.

[4] Goldberg, D., Nichols, D., Oki, B. M., and Terry,
D. (1992). Using Collaborative Filtering to Weave
an Information Tapestry. Communications of the
ACM. December.

[5] Herlocker, J., Konstan, J., Borchers, A., and
Riedl, J. (1999). An Algorithmic Framework for
Performing Collaborative Filtering. In Proceedings
of ACM SIGIR’99. ACM press.

[6] Hill, W., Stead, L., Rosenstein, M., and Furnas,
G. (1995). Recommending and Evaluating Choices
in a Virtual Community of Use. In Proceedings of
CHI ’95.

[7] Jain, A. K., and Dubes, R. C. (1988). Algorithms
for Clustering Data. Prentice Hall Publishers. En-
glewood Cliffs, NJ.

[8] Konstan, J., Miller, B., Maltz, D., Herlocker, J.,
Gordon, L., and Riedl, J. (1997). GroupLens: Ap-
plying Collaborative Filtering to Usenet News.
Communications of the ACM, 40(3), pp. 77-87.

[9] Resnick, P., Iacovou, N., Suchak, M., Bergstrom,
P., and Riedl, J. (1994). GroupLens: An Open Ar-
chitecture for Collaborative Filtering of Netnews.
In Proceedings of CSCW ’94, Chapel Hill, NC.

[10] Resnick, P., and Varian, H. R. (1997). Recom-
mender Systems. Special issue of Communications
of the ACM. 40(3).

[11] Sarwar, B. M., Konstan, J. A., Borchers, A., Her-
locker, J., Miller, B., and Riedl, J. (1998). Using
Filtering Agents to Improve Prediction Quality in
the GroupLens Research Collaborative Filtering
System. In Proceedings of CSCW ’98, Seattle, WA.

[12] Sarwar, B. M., Karypis, G., Konstan, J. A., and
Riedl, J. (2000). Analysis of Recommendation Al-
gorithms for E-Commerce. In Proceedings of the
ACM EC’00 Conference. Minneapolis, MN. pp.
158-167

[13] Shardanand, U., and Maes, P. (1995). Social In-
formation Filtering: Algorithms for Automating
’Word of Mouth’. In Proceedings of CHI ’95. Den-
ver, CO.

[14] Steinbach, M., Karypis, G., and Kumar, V.
(2000). A Comparison of Document Clustering
Techniques. In Text Mining Workshop (ACM
KDD’00).

[15] Ungar, L. H., and Foster, D. P. (1998) Cluster-
ing Methods for Collaborative Filtering. In Work-
shop on Recommender Systems at the 15th Na-
tional Conference on Artificial Intelligence.

