
13
The Tag Genome: Encoding Community Knowledge to Support
Novel Interaction

JESSE VIG, University of Minnesota
SHILAD SEN, Macalester College
JOHN RIEDL, University of Minnesota

This article introduces the tag genome, a data structure that extends the traditional tagging model to
provide enhanced forms of user interaction. Just as a biological genome encodes an organism based on a
sequence of genes, the tag genome encodes an item in an information space based on its relationship to
a common set of tags. We present a machine learning approach for computing the tag genome, and we
evaluate several learning models on a ground truth dataset provided by users. We describe an application
of the tag genome called Movie Tuner which enables users to navigate from one item to nearby items along
dimensions represented by tags. We present the results of a 7-week field trial of 2,531 users of Movie Tuner
and a survey evaluating users’ subjective experience. Finally, we outline the broader space of applications
of the tag genome.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.5.3 [Information Interfaces and Presentation]: Group and Organization Interfaces—
Collaborative computing; H.5.2 [Information Interfaces and Presentation]: User Interfaces

General Terms: Algorithms, Design, Experimentation, Human Factors

Additional Key Words and Phrases: Tagging, recommender systems, conversational recommenders, machine
learning, data mining, information retrieval

ACM Reference Format:
Vig, J., Sen, S., and Riedl, J. 2012. The tag genome: Encoding community knowledge to support novel
interaction. ACM Trans. Interact. Intell. Syst. 2, 3, Article 13 (September 2012), 44 pages.
DOI = 10.1145/2362394.2362395 http://doi.acm.org/10.1145/2362394.2362395

1. INTRODUCTION

Tagging systems have flourished across the Web. Users of tagging systems create
free-form text descriptors of music, pictures, or encyclopedia articles and use these
descriptors to navigate complex information spaces. Users may search items by the
tags that they are most interested in, and they can make sense of an item by the tags
that other users have applied. Tags can also be used to organize a collection of items,
or as a way for users to express their opinions on items to the user community.

While tagging systems provide great value to users, we believe there is an opportu-
nity to develop many new and exciting tagging applications that go beyond traditional

Since one of the authors of this article is an editor-in-chief of ACM TiiS, the reviewing of the manuscript
was managed in accordance with ACM’s policy for such situations, by a TiiS associate editor whose identify
was not revealed to the authors.
This material is based upon work supported by the National Science Foundation under grants IIS 03-24851,
IIS 05-34420, IIS 09-64695, IIS 09-64697, IIS 08-08692, and IIS 07-29344.
Author’s address: J. Vig (corresponding author); email: jesse.vig@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 2160-6455/2012/09-ART13 $15.00

DOI 10.1145/2362394.2362395 http://doi.acm.org/10.1145/2362394.2362395

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:2 J. Vig et al.

Fig. 1. Movie Tuner interface for Reservoir Dogs after a user applies the critique “less violent”.

tag browse and search. However, in order to develop many of these applications, a more
expressive tagging model is needed. In the following section we introduce a novel tag-
ging application called Movie Tuner that motivates a new type of tagging model that
we call the tag genome.

1.1. Movie Tuner: A Novel Tagging Interaction

Movie Tuner enables users to navigate an information space using tags, but in a fun-
damentally different way than traditional tag search or browse. Consider the following
hypothetical dialogue between a movie navigation system and a user Marco.

Marco: I‘d like to watch a movie, but I’m not exactly sure what I want.
System: How about When Harry Met Sally, Up, or Reservoir Dogs?
Marco: Reservoir Dogs looks like a possibility, please tell me more.
System: It’s a dark, extremely violent, crime film that has some action and is
slightly funny.
Marco: I‘m not in the mood for something quite that violent.
System: Then how about The Usual Suspects? It’s like Reservoir Dogs, but some-
what less violent.
Marco: I‘ll take it!

Movie Tuner is a novel tagging application that enables users to navigate an in-
formation space much like Marco did. Figure 1 shows the Movie Tuner interface as

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:3

Marco would have seen it after selecting Reservoir Dogs. The interface displays a set
of tags (action, violent, dark, crime, funny), each with a relevance meter indicating how
strongly Reservoir Dogs exhibits that quality. Marco clicked the less button alongside
the violent tag; in response, the system displayed a list of movies that are “Similar to
Reservoir Dogs, but less violent”, including The Usual Suspects, which Marco eventu-
ally chose.

This form of navigation has several key differences versus traditional tag-based
navigation. First, tags are used to react to specific items (“I‘d like something less
violent than Reservoir Dogs”) in contrast to traditional tag search where users begin
by specifying one or more tags (“I’d like something not violent”). Presenting tags in the
context of specific items of interest to users is consistent with prior studies that suggest
that people formulate preferences by interacting with the available choices rather than
deciding in advance what they want [Payne et al. 1993]. Second, the system displays
the relevance of tags to items on a explicit and interpretable scale, visualized with
the relevance meters shown in Figure 1. This allows users to decide if the level of a
particular tag is too high or low for their taste. Behind the scenes, these relevance
values allow the system to compare items with respect to tags (“The Usual Suspects is
less violent than Reservoir Dogs”).

1.2. Characteristics of the Traditional Tagging Model

In order to support this type of interaction, a new tagging model is needed. The tradi-
tional tagging model has two basic properties that make it difficult to apply to the use
case described in the preceding text.

Tags are binary. In most traditional tagging systems, users can only express bi-
nary relationships between tags and items1. For example, a user may apply the tag
violent to Reservoir Dogs, indicating that it is a violent movie, but she may not indicate
how violent the movie is. This makes it difficult for a system like Movie Tuner to com-
pare the relative levels of a tag across items. This is a particular challenge for tagging
systems based on the set model of tagging [Marlow et al. 2006], which states that the
user community may collectively apply a tag just once to an item. The bag model of
tagging [Marlow et al. 2006], in contrast, allows multiple users to apply the same tag to
the same item. Tagging systems based on this model can use tag frequency as an addi-
tional signal of tag relevance; if many users apply a particular tag to an item, the tag is
probably more relevant than if only one or two users have applied it. However, tag fre-
quency is a noisy signal of tag relevance; many factors can influence whether a user de-
cides to apply a particular tag, including the existing tags in the system, the popularity
of the item, and the user’s personal tendencies [Golder and Huberman 2006; Sen et al.
2006]. Also, the meaning of tag frequency may not be obvious to the end user. If the
tag violent has been applied 5 times to Reservoir Dogs out of 25 total tag applications,
does that mean that Reservoir Dogs is extremely violent or only moderately violent?

Tags are sparse. Because users apply tags voluntarily, there is no guarantee that
all of the relevant tags for an item will actually be applied to that item. Further, tag-
ging systems only capture positive relationships between tags and items; users may
express that a tag is relevant by applying the tag to the item, but they have no way of
indicating that a tag is not relevant. These two factors make it difficult to draw any
conclusions about tags that have not been applied to an item; it may mean that the
tag is not relevant to the item, or it may simply mean that no one has gotten around
to applying it yet. For Movie Tuner, it is just as important to identify tags that are not

1There has been some work in non-binary tagging systems such as Eck et al. [2007], discussed in Section 2.1.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:4 J. Vig et al.

relevant to each item as it is to identify tags that are highly relevant, since users may
request either less or more of a particular tag.

1.3. Extending the Traditional Tagging Model: The Tag Genome

To address these limitations, we introduce an extension of the traditional tagging
model called the tag genome. The tag genome records how strongly each tag applies to
each item on a continuous scale from 0 to 1 (0 = does not apply at all, 1=applies very
strongly), which we call the relevance of the tag to the item. Just as a biological genome
encodes an organism based on a sequence of genes, the tag genome encodes each item
based on its relationship to a common set of tags. In contrast to the traditional tagging
model, the tag genome provides a continuous and dense mapping between tags and
items. We describe the tag genome in greater detail in Section 3.

The tag genome provides all of the information that Movie Tuner needs to support
the interaction we just described. For the scenario depicted in Figure 1, the tag genome
enables Movie Tuner to display the relevance meters showing how strongly the tags
action, violent, dark, crime, and funny apply to Reservoir Dogs (the rightmost position
of the relevance meters indicates a relevance value of 1, the leftmost a value of 0).
Movie Tuner can find items that are “less violent” than Reservoir Dogs by selecting
items that have lower relevance values for the tag violent. The tag genome can also
be used to measure similarity between two items (see Section 5.2.2), enabling Movie
Tuner to find movies that are similar overall to Reservoir Dogs.

Movie Tuner is just one example from the broad space of potential applications of
the tag genome. Another potential application is a refined version of tag search; rather
than just specify a tag to search for, users could also indicate the desired level of that
tag. For example, someone might search for a horror movie with “a medium level of
gore or less”. Systems could also use the tag genome to help users compare items; for
example, if a user is deciding between the movies WALL-E and 9, the system could
tell the user that both movies are animated, futuristic, and dystopian, but WALL-E
is more humorous and cute, while 9 is more dark and violent. We describe these and
several other potential applications of the tag genome in Section 6.

1.4. Computing the Tag Genome

In order to implement Movie Tuner or the other applications listed, we first need to
construct the underlying tag genome. We describe a supervised learning approach for
computing the tag genome, and we apply this approach to computing the tag genome
in the movie domain. Using a variety of user-contributed data (tag applications, text-
based reviews, and ratings) as inputs, we train a learning model based on users’ judg-
ments of tag relevance for a subset of tag-item pairs. We refer to this approach as
community-supervised learning, since the user community provides both the input
data to the learning model as well as the ground truth dataset used to train the model.

1.5. Paper Overview

This article builds on our earlier published work, in which we introduce Movie Tuner
[Vig et al. 2011]. In this article, we discuss the tag genome in much more depth: we
describe how to compute the tag genome and present a case study of computing the
tag genome in the movie domain. We also expand the related work and propose other
applications of the tag genome in addition to Movie Tuner.

The structure of this article is as follows. We first present related work. We compare
the tag genome to existing data models, and we discuss how Movie Tuner builds on a
class of applications called example-critiquing systems. We then formally define the
tag genome and present guidelines for computing the tag genome using a machine

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:5

learning approach. Next, we apply these guidelines to compute the tag genome on
MovieLens, a movie recommender system that also supports tagging of movies. We
then discuss the design of Movie Tuner and present results from a 7-week field trial.
Finally, we propose several other applications of the tag genome.

2. RELATED WORK

Sections 2.1 and 2.2 discuss literature related to the tag genome, while Sections 2.3
and 2.4 focus on systems related to Movie Tuner.

2.1. Tag Prediction

To compute the tag genome, we develop algorithms that predict the relevance of tags
to items on a continuous scale. Similarly, traditional tagging systems may utilize tag
prediction algorithms that automatically predict the relevant tags for an item [Jäschke
et al. 2007; Sigurbjörnsson and van Zwol 2008; Wu et al. 2009]. In the following text,
we present several examples of tag prediction algorithms that span a variety of do-
mains and techniques.

Heyman et al. [2008] explore techniques for predicting tags for URLs on the Web
site del.icio.us2. They treat tag prediction as a binary classification task. For each tag,
the positive training examples comprise URLs to which the tag has been applied, and
the negative training examples comprise the remaining URLs. They build a separate
classification model for each tag using support vector machines with input features
extracted from page text, anchor text, and the surrounding host. They also use asso-
ciation rule mining to predict tags for a URL based on the other tags that have been
applied to the URL.

Ulges et al. [2008] developed a system to predict tags for videos from YouTube3 and
other sources. They first segment videos into key frames and extract visual features in-
cluding color, texture, and motion. They then build a nearest-neighbor classifier that
uses these features to measure similarity between videos. They also extract “visual
words” that represent characteristics of local patches of images and compute the prob-
ability of each tag given the visual words in an image. They then combine the output
of both types of classifiers using a weighted sum.

Eck et al. [2007] explore the problem of predicting tags for musical artists. They
build a multiclass classifier that predicts whether an artist has “none”, “some”, or
“a lot” of a particular tag. To construct the training set, they label each artist as
having “none”, “some”, or “a lot” of each tag based on how frequently that tag has been
applied to the artist’s songs. They assign these labels in such a way that there are an
equal number of artists assigned to each of the three labels for a particular tag. They
then train a classifier using Adaboost with single-level decision trees as weak learners;
acoustic features extracted directly from MP3 files serve as the inputs to the classifier.

Symeonidis et al. [2008] develop a personalized approach to tag prediction, recom-
mending the tags that are relevant to an item for a particular user. Their approach
is to apply tensor factorization to the tag-item-user space, transforming tags, items,
users, and their interactions into a lower dimensional space. The output of the algo-
rithm is a continuously valued estimate of each user’s affinity for each tag with respect
to each item, which is used to generate a personalized list of tag recommendations for
each item. They evaluate their approach using tagging data from Bibsonomy4 and
Last.fm5.

2http://www.delicious.com/
3http://www.youtube.com
4http://www.bibsonomy.org
5http://last.fm

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:6 J. Vig et al.

Like many of the approaches just described, we use machine learning techniques to
infer the relationships between tags and items. Like Heymann et al. [2008], we extract
features from the text associated with an item as well as the other tags that have
been applied to each item. Just as Eck et al. [2007] and Ulges et al. [2008] leverage
domain-specific features from audio or video files, we leverage the data source most
abundant in recommender systems: ratings. However, in contrast to Heymann et al.
[2008] and Ulges et al. [2008], we predict relevance values on a continuous 0–1 scale
rather than predict a binary (applies, does not apply) output. Eck et al. [2007] also use
a non-binary relevance scale. However, they base their ternary relevance scale on tag
frequency rather than explicit relevance ratings from individual users.

Like Symeonidis et al. [2008], we apply dimensionality reduction techniques to over-
come the sparsity in tagging systems. As described in Section 4.2, we perform sin-
gular value decomposition on the tag-item space in computing input features to the
tag genome. We do not decompose the full tag-item-user space like Symeonidis et al.
[2008], since we do not consider the individual user when predicting tag relevance. The
personalized extension of the tag genome proposed in Section 3.2 may benefit from a
tensor-based approach, however.

2.2. Vector Space Model

First introduced in Salton et al. [1975], the vector space model (VSM) has become a
standard model in the field of information retrieval. VSM represents each document
from a corpus as a vector of terms and associated term weights. The terms are typi-
cally individual words in the corpus, and the term weights reflect the importance of the
term to the document. For example, the tf-idf weighting scheme weights terms propor-
tionally to their frequency in the document and inversely to the number of documents
they appear in overall [Salton and McGill 1983]. The collection of term weights for all
of the documents in a corpus is typically represented as a term-document matrix.

The primary applications of the VSM are document retrieval and document clus-
tering. Because the VSM represents documents as vectors, vector similarity mea-
sures such as cosine similarity may be used to measure similarity between two
documents or between a document and a search query (which may also be expressed
as a term vector). Matrix factorization approaches such as latent semantic index-
ing (LSI) [Deerwester et al. 1990] can help overcome the sparsity issues of the VSM.
LSI uses singular value decomposition to transform term vectors into a lower dimen-
sional concept space; one can then measure the conceptual similarity between two
documents or between a document and a query based on the cosine similarity in this
lower dimensional space.

In some sense, the tag genome is a type of vector space model; the tags in the genome
serve as terms, and their respective relevance values provide term weights. The tag-
item matrix of the tag genome (see Figure 6) is analogous to the term-document matrix
for the VSM. The primary difference between the tag genome and the VSM is that the
weights in the genome are computed from a machine learning algorithm trained on
human judgments of tag relevance, whereas the weights in the vector space model are
based on term frequency.

Many applications of the tag genome are related to traditional VSM applications.
Just as term vectors in the VSM can be used to measure similarity between docu-
ments, the tag genome can be used to measure similarity between arbitrary items.
In Section 5.2.2 we describe how to compute the cosine similarity between two tag
genomes using a term-weighting function based on tf-idf. Item retrieval in Movie
Tuner (see Section 5.2) is analogous to document retrieval based on the VSM. The

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:7

Fig. 2. Entree example-critiquing system for restaurants [Burke 2002].

primary difference is that Movie Tuner retrieves items based on the difference in
relevance values instead of always retrieving the items with the highest relevance.

2.3. Example-Critiquing Systems

Researchers have explored conversational recommenders that allow users to give im-
mediate feedback on recommendations and then adjust recommendations accordingly
[Burke et al. 1997; Faltings et al. 2004; Linden et al. 1997; Smyth et al. 2004]. One
type of feedback supported by these systems is a critique, which describes what the
user thinks is wrong with a particular example. For example, in the Entree system
shown in Figure 2, users critique restaurant recommendations based on price (“less
$$”), style (“more traditional”), atmosphere (“quieter”), and other criteria. The sys-
tem then responds by selecting a new set of results that satisfies the user’s critique.
This type of conversational recommender is often referred to as an example-critiquing
system. Figures 3 and 4 show other example-critiquing systems for apartments and
digital cameras, respectively.

Example-critiquing systems generally offer the user a narrow set of dimensions
for critiquing items, and these dimensions are typically chosen by designers of the
system. For example, in the QwikShop system in Figure 4, critique dimensions include
manufacturer, zoom level, memory, weight, resolution, size, case, and price. More-
over, example-critiquing systems are traditionally knowledge-based; for example, the
Entree recommender system has an underlying database with the cuisine, price, style,
and atmosphere of every restaurant in the system.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:8 J. Vig et al.

Fig. 3. RentMe example-critiquing system for apartment rentals [Burke et al. 1996].

Fig. 4. Qwikshop example-critiquing prototype for digital cameras [McCarthy et al. 2005].

The example-critiquing paradigm motivates our design of Movie Tuner. In Movie
Tuner, tags serve as the dimensions along which users critique items. For example,
users may ask for a movie that is “more funny” or “less violent” because funny and
violent are tags in the system. However, in contrast to the compact set of system-
engineered dimensions typically provided by example-critiquing systems, tags provide
a broad range of feedback in the language of the users themselves. Further, Movie
Tuner requires no underlying knowledge base that knows how violent Die Hard
is, or how much action is in Forrest Gump. Rather, this information is generated
automatically by machine learning models based on user-contributed content. One
compelling reason for earlier critiquing systems relying on expert-based systems is

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:9

Fig. 5. The “textual aura” for the musical artist Jimi Hendrix in the Music Explaura system [Green et al.
2009]. Users can steer the system to related artists by dragging tags to make them larger or smaller.

that they did not have access to the volume of user-generated data that is available
today.

2.4. Tag-Based Recommenders

Recent work has explored recommender algorithms that leverage tagging data to rec-
ommend items. For example, Tso-Sutter et al. [2008] extend traditional collaborative
filtering algorithms by incorporating tagging data into the user-item matrix. Guan
et al. [2010] apply a graph-based learning algorithm to recommend items based purely
on tagging data. Sen et al. [2009] construct a Bayesian model that estimates a user’s
preference for items based on their inferred preferences for tags.

Researchers have also developed interfaces that combine tagging and recommen-
dation. The most similar work to Movie Tuner is the Music Explaura system [Green
et al. 2009], in which users “steer” music recommendations using tags (see Figure 5).
MrTaggy [Kammerer et al. 2009] is a tagging system that supports exploration by en-
abling users to provide positive or negative feedback to tags associated with particular
items.

Movie Tuner differs from these systems in several ways. First, Movie Tuner pro-
vides an explicit measure of tag relevance on a 0–1 that is based on a gold-standard
set of tag relevance values provided by users. Second, Movie Tuner provides a novel in-
terface for visualizing tag relevance and applying critiques. Third, we evaluate Movie
Tuner in a live user study involving thousands of users, comparing multiple algorithms
for suggesting tags as well as multiple algorithms for retrieving items in response to
users’ critiques.

3. THE TAG GENOME

In this section, we formally define the tag genome and present general guidelines for
computing the tag genome. In Section 4, we apply these guidelines to compute the tag
genome in the movie domain.

3.1. Definition

Just as an organism is defined by a sequence of genes, an item in an information space
may be defined by its relationship to a set of tags. If T is a set of tags and I is a set
of items, we quantify the relationship between each tag t ∈ T and item i ∈ I by the
relevance of t to i, denoted as rel(t, i). rel(t, i) measures how strongly tag t applies to item
i on a continuous scale from 0 (does not apply at all) to 1 (applies very strongly). In the

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:10 J. Vig et al.

Fig. 6. The tag genome. Each entry in the matrix records the relevance of a tag to an item on a 0–1 scale.

movie domain6, for example, rel(violent, Reservoir Dogs) = 0.98, rel(violent, The Usual
Suspects) = 0.65, and rel(violent, A Cinderella Story) = 0.03.

The tag genome G is the collection of relevance values for all tag-item pairs in T × I,
represented as a tag-item matrix as shown in Figure 6. We define G such that

Gt,i = rel(t, i) ∀t ∈ T, i ∈ I.

We also use the term tag genome to describe the vector of tag relevance values for a
particular item i, which we denote as Gi:

Gi =
〈
rel(t1, i), . . . , rel(tm, i)

〉 ∀tj ∈ T.

Each Gi represents a single column in the matrix G.
When we use the term tag genome in the context of a particular item (“the tag

genome of Reservoir Dogs”), we are referring to Gi; otherwise we are referring to the
full matrix G.

3.2. Assumptions

In this section, we discuss the assumptions made in the preceding definition of the tag
genome, and we propose some alternative formulations.

Community Consensus Model of Tag Relevance. According to our definition of the
tag genome, each tag t has one true relevance value rel(t, i) with respect to each item
i. However, tags are often subjective [Sen et al. 2006], so one user’s assessment of tag
relevance may differ from another’s. For example, one user might find Pulp Fiction
uproariously funny, while another considers it devoid of any humor. An alternative,
personalized formulation of the tag genome could take these individual differences
into account. Instead of representing tag relevance as rel(t, i), the system could model
it as rel(t, i, u), representing the relevance of tag t to item i from the perspective of user
u. However, computing rel(t, i, u) requires more sophisticated models than estimating
rel(t, i), and it also requires knowledge about the particular user. We leave the person-
alized extension of the tag genome to future work.

6We describe the method for computing these values in Section 4.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:11

Uniform Relevance Scale. For all tags in the genome, the relationship between
item and tag is expressed on a continuous scale from 0 to 1. In reality, the nature of
this relationship can vary depending on the tag. While some tags represent continuous
attributes that may be present to varying degrees, other tags describe binary qualities
that either apply to the item or do not. For example, it makes more sense to describe
a movie as somewhat violent (continuous) as opposed to somewhat based on a play
(binary). The 0–1 relevance scale is general enough to handle both types of tags; binary
attributes may simply be represented as 1 (relevant) or 0 (not relevant). Nonetheless,
there may be advantages to explicitly modeling the type of tag. First, the learning
model could leverage this information to more accurately predict tag relevance, since
only relevance values of 0 or 1 are possible for binary tags. Second, the system could
visualize tag relevance in different ways depending on the type of tag. Rather than
displaying a bar of varying length (see Figure 1) to convey the relevance of binary tags,
the interface could simply indicate “yes” or “no”, for example. We leave this extension
of the tag genome to future work.

3.3. Computing the Tag Genome

Now that we have defined the tag genome, the next question is how to compute it.
That is, how do we come up with rel(t, i) for all t ∈ T and i ∈ I? We considered three
approaches:

— User-contributed. In this approach, users of the system rate the relevance of tags
to items. This is the similar to the approach taken by traditional tagging systems,
which rely on users to apply tags to items; the difference is that users would need
to specify a continuous value rather than apply a binary label.

— Expert-maintained. Rather than rely on users to contribute relevance ratings, an-
other option is to employ domain experts to provide these ratings. This is similar to
the approach used by many example-critiquing systems (see Section 2.3), which use
domain experts to populate the underlying knowledge base.

— Machine-learned. Machine learning models can automate the process of comput-
ing the tag genome. Given a data source and a set of training examples, machine
learning models learn a mapping between data attributes and the output variable,
in this case tag relevance. Once trained, the model can predict the relevance for all
tag-item pairs in the genome.

The challenge of the user-contributed approach is finding enough users to rate the rele-
vance for all tag-item pairs in G. The disadvantage of the expert-maintained approach
is that you have to compensate the experts, which may be expensive if the space of
tag-item pairs is large. In both cases, the volume of data required is problematic. In
contrast, the machine learning approach learns from a relatively small set of train-
ing examples and then computes the relevance for the majority of tag-item pairs. It
complements the other two approaches, since relevance ratings from either experts or
users can serve as training examples for the learning model.

We now present step-by-step guidelines for computing the tag genome using
machine learning. As summarized in Figure 7, we propose a supervised approach:
one first identifies a set of input features, and then trains a regression model on these
features using a set of labeled training examples. Other approaches are possible,
for example, one could perform matrix factorization on the tag genome. However,
these two approaches are not mutually exclusive, since the output from the matrix
factorization can be used as an input in the regression. Regression offers a generic
framework that can combine features from multiple data sources, as well as the

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:12 J. Vig et al.

Fig. 7. Computing the tag genome.

output from various models. In Section 4.2, we describe several features computed
from various models such as singular value decomposition.

STEP 1: Select tags. The first step is to choose the set of tags T that constitute the
“genes” of the tag genome. The goal is to find a set of tags large enough to capture the
diverse interests of the user community, but not so large as to (1) make the learning
problem intractable, and (2) spread the training data (see Step 3) too thinly across
tags. Various metrics may be used to gauge the community’s interest in a particular
tag, for example, one might consider how many users have applied the tag or how
many have searched by the tag. The appropriate number of tags to choose will depend
on the particular domain.

STEP 2: Extract features. The next step is to identify a data source and extract a
set of input features for the machine learning model. Data sources might include the
following.

— User-generated content. Users contribute a variety of content, such as text (reviews,
comments, blogs), ratings, and tags. Each of these data sources may provide fea-
tures for a machine-learning algorithm. For example, one potential feature from
textual data is the frequency with which a tag appears in the text for an item;
the more frequently the tag appears, the more likely the tag is relevant to that
item. Other features for predicting tag relevance may be less direct, for example, in
Section 4.2.3, we describe features computed from users’ ratings of items.

— System-maintained metadata. Items often have associated metadata, for instance,
music albums typically have a genre, title, artist, release date, and description.
These metadata may help predict the relevance of particular tags. Knowing that a
music album belongs to the “new age” genre, for example, might help predict that
the tag relaxing has high relevance.

— Item content. Many items, such as books, music, and movies, exist in an electronic
form that may itself provide a rich set of features. For example, one might construct
a feature from a movie’s audio file that detects the number of explosions in the
movie. This feature might help predict the relevance of tags such as violent or action.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:13

In Section 2.1, we discuss algorithms for tag suggestion that extract features from
video, audio, and image data; these features may also potentially be used to compute
the tag genome.

STEP 3: Collect training data. The learning model needs training examples in
order to learn the relationship between the input features and tag relevance. Each
training example is a tag-item pair with an associated relevance rating. These rele-
vance ratings may be collected using either the expert-maintained or user-contributed
approaches described before, but only for a subset of tag-item pairs in the genome.

We prefer the user-based approach, since it allows the user community to guide the
machine learning process; we refer to this approach as community-supervised learn-
ing. Users could provide this training data at various stages of computing the tag
genome. Prior to the system computing the tag genome, users could provide initial
training data through data collection tools like the survey we describe in Section 4.3.
Once the tag genome has been computed, users could provide additional training data
directly in the application, for example, in Movie Tuner, one could allow users to adjust
relevance values by clicking on the relevance meters (see Figure 1) and dragging them
to a different position. The system could gradually refine the tag relevance predictions
as it gathers more feedback from users.

STEP 4: Build model. The learning model maps input features to tag relevance
predictions. Since tag relevance is continuously valued, a natural choice is to use
a regression model, where tag relevance is expressed as a weighted combination of
input features. There are many different types of regression models, ranging from
simple linear regression to more complex models such as generalized linear models
or hierarchical models. In Section 4.4, we discuss a variety of regression models for
predicting tag relevance.

STEP 5: Predict tag relevance. Once the model has been trained, it can be used to
predict the relevance for all tag-item pairs in the genome.

4. CASE STUDY: COMPUTING THE TAG GENOME IN THE MOVIE DOMAIN

In this section, we describe how we compute the tag genome for MovieLens7, a movie
recommender Web site that also supports tagging of movies. MovieLens has been in
continuous use since 1997, with 198,000 users providing a total of 18-million movie
ratings. In 2006, a tagging feature was added to MovieLens, enabling users to apply
free-form descriptors such as violent, Meg Ryan, or quirky to movies. MovieLens uses
the bag model of tagging [Marlow et al. 2006] where multiple users may apply the same
tag to a given item. Since the tagging feature was launched, 6,166 users have applied
29,581 distinct tags, resulting in 273,000 total tag applications (a tag is a particular
word or phrase, a tag application is a user’s association of a tag with a particular
item).

4.1. STEP 1: Select Tags

MovieLens users have applied nearly 30,000 distinct tags, ranging from very popular
tags such as classic (applied by 416 users), funny (279 users), and animation (236
users) to tags only applied by a single user such as oh yah, sidecar, or acorn. We
wished to select the tags most valued by the user community; therefore we filter tags
based on popularity, including only those tags applied by at least 10 users. Tags below

7http://www.movielens.org

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:14 J. Vig et al.

Table I. Data Sources Used to Predict Tag Relevance

Type of data Source Description Mean Volume
Tag applications MovieLens Users’ applications of tags to

movies.
28 tag applications per
movie

User reviews IMDB Text-based reviews of movies
contributed by users.

35,446 total words per
movie

Ratings MovieLens User ratings of movies, on a
scale from 1/2 to 5 stars

1,965 ratings per movie

Table II. Features Used to Predict Tag Relevance

Type of data Feature Description
Tag applications tag-applied(t, i) 1 if tag t has been applied to item i, 0 otherwise.

tag-count(t, i) Number of times tag t has been applied to item i
tag-share(t, i) tag-count(t, i) divided by total number of tag applications for

item i
tag-lsi-sim(t, i) Similarity between tag t and item i using latent semantic

indexing, where each document di is the set of tags applied
to item i

User reviews text-freq(t, i) Frequency with which tag t appears in text reviews of item i
text-lsi-sim(t, i) Similarity between tag t and item i using latent semantic

indexing, where each document di is the set of words in user
reviews of item i

Ratings avg-rating(t, i) Average rating of item i
rating-sim(t, i) Cosine similarity between ratings of item i and aggregated

ratings of items tagged with t

All regress-tag(t, i) Predicted value for rel(t, i), based on a regression model using
tag-applied as the output variable and the other features as
the input variables.

this threshold tended to be either personal (jb’s dvds), extremely specific (archery), or
misspellings of more popular tags (Quinten Tarantino). We filter the remaining tags
based on a tag quality metric developed by Sen et al. [2007], excluding tags that scored
in the bottom 5 percentile.

After filtering, 1,570 tags remained. 442 of these tags were names of actors or
directors. Since MovieLens already stores the actors and director for each film, we
simply set rel(t, i) = 1 for an actor/director tag t if the actor/director worked on film i,
and set rel(t, i) = 0 otherwise. We compute the relevance of the remaining 1,128 tags
using machine learning as described in the following text. We exclude actor/director
tags from the machine learning process so that we could collect more training data for
the other tags in the genome for which we had no system-maintained metadata.

4.2. STEP 2: Extract Features

We extracted features from three types of user-contributed content: tag applications,
user reviews, and ratings, as summarized in Table I. The tag applications and ratings
came from MovieLens itself, while the user reviews were crawled from the Internet
Movie Database Web site8. From each of these data sources we extracted several fea-
tures, summarized in Table II. Each of these features is defined for a particular tag
and item, since what we are trying to predict – tag relevance – is specific to a tag-item
pair.

8http://www.imdb.com

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:15

4.2.1. Features Based on Tag Applications. When a user applies tag t to item i, she is
expressing that t is relevant to i to some degree. The following features use this binary
signal of tag relevance to help predict rel(t, i).

Tag-applied. tag-applied(t, i) equals 1 if tag t has been applied to item i, 0
otherwise.

Tag-count. tag-count(t, i) equals the number of times tag t has been applied to item
i. This feature reflects the fact that tags applied many times to an item may be more
relevant than those applied only a few times or not at all.

Tag-share. tag-share(t, i) equals the number of times tag t has been applied to
item i, divided by the number of times any tag has been applied to item i. This feature
controls for the fact that the tag-count feature is biased towards popular items that
attract a large number of tag applications.

Tag-lsi-sim. The above three features provide a signal of tag relevance only if tag t
has actually been applied to item i. The other tags applied to an item can also provide
clues that a tag is relevant, for example, if the tags love story and hilarious have been
applied to an item, it is likely that the tag romantic comedy is highly relevant.

A common technique for finding relationships between terms, in this case tags, is
latent semantic indexing (LSI) [Deerwester et al. 1990]. LSI applies rank-reduced
singular value decomposition to a term-document matrix in order to express the doc-
uments and terms in a lower dimensional concept space. One can then measure the
conceptual similarity of a term and a document based on their cosine similarity in this
concept space.

To use LSI for tags, we construct a term-document matrix (see Section 2.2) where
each document comprises the tags that have been applied to a particular item. For-
mally, we associate each item i with a document vector di, which represents one column
in the term-document matrix:

di =
〈
tag-applied(t1, i), . . . , tag-applied(tm, i)

〉 ∀tj ∈ T.

We used tag-applied as the term weight function rather than tag-count or tag-share,
because tag-lsi-sim performed best in predicting tag relevance with tag-applied as the
term weight function9.

For each tag t, we define a pseudo-document dt, which has a term weight of 1 for tag
t and 0 for other terms.

We then apply rank-reduced singular value decomposition to the term-document
matrix. Based on this matrix factorization, we transform vectors di and dt into a
lower-dimensional concept space; d′

i and d′
t denote the transformed versions of di and

dt, respectively. We define tag-lsi-sim(t, i) as the cosine similarity of d′
i and d′

t:

tag-lsi-sim(t, i) = cos(d′
t, d′

i).

4.2.2. Features Based on User Reviews. When users review items, they naturally use
words or phrases that are relevant to that item. The following features extract signals
of tag relevance based on how frequently tags and related terms appear in user reviews
from the Internet Movie Database10 Web site.

9We evaluated features using relevance ratings collected in a pilot survey (see Section 4.3.3). These ratings
were not used in the final model evaluation.
10http://www.imdb.com

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:16 J. Vig et al.

Text-freq: One simple predictor of rel(t, i) is the frequency with which tag t appears in
the combined reviews of i, which we denote as text-freq(t, i). We performed the following
steps to computing this feature.

— Stopword removal. Stopwords represent common words in a corpus that provide
little informational value, such as the, is, or and. We removed all stopwords from the
reviews based on a standard list of stopwords provided with the Natural Language
Toolkit [Bird et al. 2009]. We also removed sequences of words in each review that
closely matched the title of the reviewed movie. We did this because users often
referred to the title in their reviews, artificially boosting the frequency of title words.

— Stemming. Word stemming is the practice of reducing a word to its stem or root
form so that different forms of the same word may be equated. We stemmed words
using the Porter Stemmer [Porter 1980] as implemented by the Natural Language
Toolkit [Bird et al. 2009].

— Tokenization. Tokenization is the process of dividing a block of text into meaningful
units or tokens. We extracted tokens for each tag (which may span one or more
words) in the genome as well as the 1000 most frequent words in the corpus that are
not tags. We use the non-tag tokens for computing the text-lsi-sim feature described
in the following text.

— Smoothing. Smoothing can help improve the accuracy of frequency estimates,
especially when little data is available. We initially tried Laplacian smoothing
[McCallum and Nigam 1998] when calculating text-freq, but achieved better results
using a Bayesian approach, which we described in detail in online Appendix A
(available in the ACM Digital Library).

— Normalization. Word frequency may vary considerably across tags; popular terms
such as “funny” or “action” will naturally appear more frequently in user reviews
than more obscure terms such as “nonlinear” or “magical realism”. To standardize
text-freq across tags, we compute z-scores by subtracting the mean and dividing by
the standard deviation specific to each tag11.

Text-lsi-sim. The text-lsi-sim feature is similar to tag-lsi-sim, described in detail
above. Whereas tag-lsi-sim constructs each document vector di from the tags that users
have applied to item i, text-lsi-sim constructs each di from the tag and word tokens
in user reviews of i (see Tokenization). We include non-tag tokens from the reviews
because they can help reveal semantic relationships between tags and items. If terms
denotes the set of distinct tag and word tokens, we define each document di as:

di =
〈
text-freq(i, term1), . . . , text-freq(i, termn)

〉 ∀ termk ∈ Terms.

We then perform rank-reduced singular value decomposition on the term-document
matrix, and we express item i and tag t as vectors in the lower dimensional concept
space, denoted as d′

t and d′
t, respectively.

We define text-lsi-sim(t, i) as the cosine similarity of these concept vectors:

text-lsi-sim(t, i) = cos(d′
t, d′

i).

4.2.3. Features Based on Ratings. Because MovieLens users have contributed over 18-
million movie ratings, we wanted to see if we could use this data to help predict tag
relevance. But it is not immediately clear how to do this, for example, when a user
rates Die Hard as 4 stars, how does that tell us that a particular tag is more or less
relevant to this movie? We now describe two features that extract signals of tag rele-
vance by analyzing ratings in aggregate.

11We also normalize this feature across all tags as described in Section 4.2.5.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:17

Avg-rating. avg-rating(t, i) is the average rating for item i. This feature is item-
specific and provides a weak signal of tag relevance for certain tags. For example, the
average rating of movies tagged with stupid is 3.2 stars, while movies tagged with
intelligent average 3.9 stars (compared to an average rating of all movies of 3.5 stars).
Therefore if a movie’s average rating is low, it is more likely that stupid is relevant and
less likely that intelligent is relevant.

Rating-sim. For recommender systems like MovieLens, a common way to measure
the similarity between two items is to compute the cosine similarity of their respective
ratings vectors12. The rating-sim feature uses a similar approach to compute the affin-
ity between a tag and an item. Although tags have no ratings associated with them,
one can compute ratings for tags by aggregating the ratings of items to which the tag
has been applied [Vig et al. 2009]. We define rating-sim(t, i) as the cosine similarity be-
tween the vector of ratings for item i across users and the vector of computed ratings
for tag t across users. This is similar to the approach used to estimate tag relevance in
Vig et al. [2009].

Let ru,i denote user u’s rating of item i, adjusted by user-item mean13. We define user
u’s “rating” of tag t as the smoothed average of u’s ratings of items tagged with t:

ru,t =

∑
i′∈Iu∩It

ru,i′ + r̄u

|Iu ∩ It| + 1
,

where Iu = items rated by u, and It = items tagged with t.
We smooth the computed value by adding the user’s average rating r̄u to the nu-

merator and 1 to the denominator. ru,t is undefined if |Iu ∩ It| = 0. We exclude item i
(for which we are calculating rel(t, i)) from Iu in order to avoid artificially boosting the
cosine similarity between ru,t and ru,i as computed below.

Let U ′ denote the set of users for whom both item rating ru,i and tag rating ru,t are
defined. We define rating-sim(t, i) as the cosine similarity between ru,i and ru,t across
these users:

rating-sim(t, i) =
∑

u∈U ′ ru,t · ru,i√∑
u∈U ′ r2

u,t ·
√∑

u∈U ′ r2
u,i

.

4.2.4. Meta-Feature. The regress-tag feature blends the output of several other
features.

Regress-tag. Tag applications represent a crude form of relevance assessment:
when a user applies tag t to item i, they are expressing that t is relevant to item i
to some degree. The regress-tag feature uses these approximate relevance ratings to
train a regression model that uses the other features as inputs. This approach parallels
how we train the final regression model for computing the tag genome; the difference
is that we use continuous relevance ratings collected from a survey when training the
final model. While binary tag applications are not as precise as the continuous rel-
evance ratings, they represent preexisting data that can complement the continuous
ratings. This is especially helpful for tags that have only a small number of relevance
ratings from the survey (see Section 4.3).

We constructed positive training examples from tag-item pairs (t, i) where t has been
applied to i; we assign these pairs the maximum relevance rating of 1, based on the

12The ratings vector for an item is the collection of ratings for that item, indexed by user.
13We first subtract the user mean from each rating, then compute each item’s mean rating based on these
user-mean adjusted ratings, and finally subtract the adjusted item mean from the user-mean adjusted
rating.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:18 J. Vig et al.

assumption that if, tag t has been applied to i, it is probably highly relevant. We gen-
erated negative examples by pairing each tag t with a random set of items not tagged
with t, and assigning these pairs a relevance rating of 0. We weighted the examples in
the regression model such that the weighted count of negative examples would each
equal the number of positive examples for each tag. We did this to avoid an imbalance
between the positive and negative examples and to maintain consistency across tags
since some tags had many more positive examples than others.

Once we generated our training set, we fit a regression model using the fea-
tures text-freq, text-lsi-sim, avg-rating, and rating-sim as inputs. We did not use the
tag-applied feature because it is the same as the output variable in the regression,
nor did we use tag-count, tag-share, or tag-lsi-sim since they are closely related to
tag-applied. We used the nonlinear multilevel regression model described in Section
4.4.2 because it resulted in the feature that peformed best in predicting the relevance
ratings from the pilot survey (see Section 4.3.3). We define regress-tag(t, i) as the rele-
vance prediction for tag t and item i.

4.2.5. Preprocessing. We normalized all of the features by subtracting by the mean
and dividing by the standard deviation across all tag-item pairs in the genome. We log
transformed text-freq, tag-count, and tag-share to bring them closer to a normal distri-
bution. This transformation also resulted in stronger correlations with the relevance
ratings in the pilot survey (see Section 4.3.3).

4.3. STEP 3: Collect Training Data

We collected training examples by conducting a survey in which we asked MovieLens
users to rate the relevance of tags to movies. As summarized in Figure 8, we conducted
two phases of this survey: a pilot phase, which was restricted to a smaller subset of
tags and users, and the main phase, which included all tags in the genome14 and a
much larger set of users.

4.3.1. Survey Design. On each page of the survey (see Figure 9), subjects rated the
relevance of a particular tag to each of 6 movies on a scale from 1 (does not apply
at all) to 5 (applies very strongly). Although we model tag relevance as a continuous
variable, we chose a discrete rating scale because past work suggests that users have
difficulty with continuous scales [Sparling and Sen 2011]. We personalize each survey,
only including movies that the subject had rated in the past. To help subjects recall the
details of each movie, we included a link (“Summary”) to each movie’s cover art as well
as a short synopsis, both made available through the Netflix API15. We also provided
space for free-form comments. Subjects could repeat the survey up to 3 times, each
time with a new set of tags and movies.

4.3.2. Sampling Methodology. In this section, we discuss how we select the tag and as-
sociated movies to show on each page of the survey. We present the complete algorithm
in online Appendix B (available in the ACM Digital Library). The main features of this
algorithm are as follows.

— Importance-based sampling. We wanted to collect more relevance ratings for more
important tags, since more training data for a particular tag enables one to more
accurately predict relevance for that tag16. We measure the importance of tag t by
popularity(t), which we define as the number of distinct MovieLens users who have

14excluding actor/director tags as discussed in Section 4.1.
15http://developer.netflix.com.
16For the tag-specific and multilevel models described in Section 4.4.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:19

Fig. 8. Overview of process for collecting training data.

applied tag t. We use tag popularity because it reflects how important the tag is
to the overall community. In order to collect more data for popular tags, we assign
each tag t to a number of subjects proportional to log(popularity(t)). We apply a log
transform so that popular tags don’t completely dominate the training set.

— Stratified sampling. We sample movies for the survey using a stratified approach
based on tag relevance. For each we tag we show to a user, we select two movies
that we predict will have low relevance with respect to the tag, two movies we pre-
dict will have medium relevance, and two that we predict will have high relevance.
We sample movies in this way in order to achieve a balanced training set with a
roughly equal number of low-, medium-, and high-relevance ratings. Without strat-
ified sampling, it is likely that most, if not all, of the movies would have low rele-
vance with respect to a given tag. In order to predict in advance which movies have

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:20 J. Vig et al.

Fig. 9. Page from survey.

low, medium, or high relevance with respect to each tag, we first train a relevance
prediction function on data collected from the pilot survey. We describe this in more
detail in the following text.

4.3.3. Pilot Survey. Prior to the main phase of the survey, we conducted a pilot phase
in which we invited a smaller number of users to take the survey for a subset of 50
tags. Besides testing the usability of the survey, the purpose of the pilot survey was to
collect data to train an initial relevance prediction model that we use to sample movies
for the main survey (see Stratified sampling).

We used the same sampling algorithm for the pilot survey that we later use for
the main survey (see Appendix B in the online appendix available in the ACM Dig-
ital Library). In order to perform stratified sampling in the pilot survey, we needed
to first classify items as low, medium, or high relevance with respect to each tag. To
do this, we handcrafted a rule-based classifier based on the strongest individual pre-
dictor of tag relevance, which appeared to be text-freq. For each of the 50 tags in the
pilot survey, we manually choose two cutoff values for text-freq: one value separated
low-relevance items from medium-relevance items, and the other separated medium-
relevance items from high-relevance items. We classified each item i as low, medium, or
high relevance with respect to tag t, based on the value of text-freq(t, i) relative to these
cutoffs.

85 users took the pilot survey, providing a total of 3,304 relevance ratings. As men-
tioned earlier, the reason we conducted the pilot survey was to train a relevance predic-
tion function for sampling of movies in the main survey. We trained a nonlinear, mul-
tilevel regression model as described in Section 4.4.2 because it performed best based
on cross-validation of the ratings from the pilot survey. Although the pilot survey data
used to train this model only included 50 tags, this model can predict relevance for
any tag.

4.3.4. Main Survey. We invited 5,320 MovieLens users to participate in the main
phase of the survey. We included the 1,128 tags from the genome that were not names
of actors or directors (see Section 4.1), and we drew from the 7,716 movies with at

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:21

Fig. 10. Distribution of relevance ratings in main phase of survey (1=Does not apply at all, 5= Applies very
strongly).

least 100 ratings. We assigned tags and movies to each user based on the sampling
algorithm described in Section 4.3.2. We used the relevance prediction model trained
on the data collected in the pilot survey for the stratified sampling component: we
classify items with a relevance prediction of 1/3 or less as low relevance, those with
a predicted relevance of 1/2 to 2/3 as medium relevance, and those with a predicted
relevance of 2/3 or higher as high relevance.

676 users participated in the survey (13% response rate), providing relevance rat-
ings for a total of 50,203 tag-movie pairs. 53% of those taking the survey elected to
take it multiple times (with different tags and movies each time). Figure 10 shows
the overall distribution of relevance ratings. On average, we collected 45 ratings
per tag.

4.4. STEP 4: Build Model

In this section, we describe the learning models we use to predict tag relevance. Many
different approaches are possible; we implemented six regression models that span a
range of techniques. The models vary along two dimensions.

(1) Linear versus nonlinear. Linear regression models express tag relevance as a lin-
ear combination of features, while nonlinear models support nonlinear combina-
tions of features. Linear models have the advantage of simplicity, while nonlinear
models can more precisely capture the relationship between input features and tag
relevance.

(2) Model granularity. The learning model must be able to predict the relevance of any
of 1,128 distinct tags, each of which may exhibit very different behavior. Therefore
a natural question is to what degree we should tailor the model to each tag. On one
extreme, we could build a model that treats all tags the same and learns a single
set of regression coefficients for all tag-item pairs in the genome; we refer to this
type of model as a tag-independent model. On the other extreme, we could build
a completely different learning model for each tag t that only applies to tag-item
pairs with tag t; we call this the tag-specific model. Both approaches are illustrated
in Figure 11.

The advantage of a tag-independent model is that there are fewer parameters to
learn. The model only needs to learn a single set of regression coefficients across all
tags, and it can use the entire training set to do so. In contrast, tag-specific models
must learn separate regression coefficients for each of the 1,128 tags, which can lead
to overfitting since each tag has an average of only 45 training examples. However,

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:22 J. Vig et al.

Fig. 11. Three different approaches with respect to model granularity. The tag-independent approach as-
sumes a unified model across all tags, while the tag-specific approach learns a separate model for each tag.
The multilevel approach combines tag-independent and tag-specific approaches.

tag-specific models can exploit relationships between the features and tag relevance
that depend on the tag. For example, the relationship between avg-rating and tag
relevance is likely tag-specific: for tags with a positive connotation like good acting,
one would expect a positive correlation between an item’s average rating and tag rel-
evance, whereas the opposite is likely true for tags with a negative connotation like
predictable. However, most features have been designed to be meaningful across tags;
text-freq, text-lsi-sim, tag-applied, tag-lsi-sim, rating-sim and regress-tag should cor-
relate positively with relevance regardless of the tag. Nonetheless, the optimal weights
for these features may vary according to tag.

Multilevel models offer a compromise between the tag-independent and tag-specific
models. As we discuss in more detail in the following text, multilevel models learn re-
gression coefficients that reflect characteristics of each tag as well as qualities shared
across all tags. Multilevel models can capture tag-specific relationships between fea-
ture values and tag relevance, while avoiding the overfitting problems of the tag-
specific model.

We now present 6 specific regression models that each use a unique combination of
the approaches just outlined (2×3). In the following definitions, xt,i denotes the feature
vector for the tag-item pair (t, i), including a constant term. β denotes a coefficient
vector of the same length as xt,i.

4.4.1. Linear Models. The linear models express rel(t, i) as a linear function of the
feature vector xt,i.

Tag-independent. For the tag-independent model, we use a single regression
equation:

rel(t, i) = xT
t,iβ.

Here the vector of coefficients β is a constant and does not vary by tag.

Tag-specific. In this model, the vector of coefficients βt is specific to each tag:

rel(t, i) = xT
t,iβt.

Here we solve a separate regression equation for each tag t, using only the training
data associated with t to train each model. If no training data exists for t, we predict a
value of 0.5.

Multilevel. In the multilevel or hierarchical model [Gelman and Hill 2007; Rau-
denbush and Bryk 2002], the vector of coefficient βt is also specific to each tag. Unlike

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:23

the tag-specific model, however, each βt is modeled as a random variable sampled from
a multivariate normal prior distribution N(μ,�):

rel(t, i) = xT
t,iβt

βt ∼ N(μ,�).

The hyperparameters μ and � are estimated from the data along with each βt. μ is
the “average” βt across all tags and represents the tag-independent component of this
model. The estimate for each βt depends on both this prior distribution N(μ,�) as
well as the training data specific to tag t. When little training data is available for t, βt
will mostly be determined from the prior distribution and its estimated value will be
very close to μ. As more training data is available for t, the estimate of βt may deviate
further from μ. Thus the multilevel model is able to capture tag-specific behavior,
while avoiding overfitting when little data is available for a particular tag.

4.4.2. Nonlinear Models. There are many different types of nonlinear regression mod-
els, including nonlinear least squares [Kelley 1999], SVM regression [Drucker et al.
1997], and generalized linear models [Gelman and Hill 2007; McCullagh and Nelder
1989]. We chose to use a generalized linear model for two reasons. First, we wished
to implement both a single-level and multilevel version of the nonlinear model and
generalized linear models support both. Second, generalized linear models are widely
used and are supported in standard statistical packages such as R.

Generalized linear models extend linear regression by introducing a nonlinear link
function, which transforms a linear combination of input features into a probability
distribution for the output variable. The choice of link function depends on the nature
of the problem. Since we are predicting an output variable that lies in a fixed range
of [0, 1], we chose a sigmoidal transform using the logit link function. For notational
convenience, we refer to the inverse logit:

logit−1(x) =
ex

1 + ex .

This is the same approach used in logistic regression. Logistic regression, however,
is traditionally used in classification, where the output is the probability of the positive
class:

Pr(y = 1) = logit−1(xTβ
)
.

In our case, we are predicting a continuous output variable, rel(t, i). Therefore we
need to adapt the traditional logistic regression model. We do so by treating rel(t, i),
which lies on the range [0, 1], as a probability. From a probabilistic viewpoint, one can
think of rel(t, i) as the certainty that tag t is relevant to item i: a value of 1 indicates
that t is relevant to i with complete certainty, while a value of 0 indicates that t is
certainly irrelevant to i. Values in between represent varying degrees of certainty that
t is relevant to i.

Tag-independent. The tag-idependent nonlinear model assumes a single vector of
coefficients β, as in the linear case:

rel(t, i) = logit−1(xT
t,iβ

)
.

Tag-specific. The tag-specific nonlinear model uses a separate coefficient vector βt
for each tag:

rel(t, i) = logit−1(xT
t,iβt

)
.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:24 J. Vig et al.

As in the linear case, we solve a separate regression equation for each βt using only
the training data for t.

Multilevel. The multilevel nonlinear model follows a form similar to the linear
version:

rel(t, i) = logit−1(xT
t,iβt

)
,

βt ∼ N(μ,�).

4.4.3. Model Fitting. We fit the regression models using the following functions from
the R programming language: lm (linear tag-independent and linear tag-specific),
lmer (linear multilevel), glm (nonlinear tag-independent and nonlinear tag-specific),
and glmer (nonlinear multilevel) [R Development Core Team 2010; Bates and Sarkar
2007]. For the lmer and glmer functions, we used the tag as the grouping factor. We
clamped the predictions from the linear models to lie in the [0, 1] interval. This step
was not necessary for the generalized linear models since their output is already re-
stricted to the [0, 1] range.

Prior to fitting the models, we converted the survey ratings from a 1-5 scale to the
[0, 1] interval using a linear transformation. However, we found that all models per-
formed better when we binarized the ratings used to train each model. We did this by
mapping survey ratings of 1 or 2 to a relevance value of 0, mapping ratings of 4 and 5
to a relevance value of 1, and discarding ratings of 3. We only applied this binarization
when fitting the models, never when validating the models.

4.4.4. Feature Selection. We performed initial feature selection to eliminate low-value
or redundant features. We eliminated tag-count and tag-share because neither feature
improved the performance of regression models over just using the tag-applied feature
alone17.

We performed an additional round of feature selection to prevent model overfitting.
As discussed earlier, our regression models vary in how susceptible they are to over-
fitting. In order to select the features most appropriate for each model, we used the
wrapper approach to feature selection [Guyon and Elisseeff 2003; Kohavi and John
1997] where the model itself is used to evaluate a candidate set of features. We used a
forward-selection algorithm for choosing features: beginning with an empty set of fea-
tures, we incrementally added the feature that resulted in the lowest mean absolute
error for the model. We used cross-validation to compute the MAE in order to properly
assess the generalization error; we stopped adding features once the MAE began to
increase due to model overfitting.

We repeated the feature selection process for each round of the cross-validation de-
scribed next. We only used the training partition from each round for feature selection,
reserving the test partition for model evaluation.

4.4.5. Model Evaluation. We evaluated the 6 regression models using tenfold cross-
validation on the ratings collected in the main phase of the survey. As shown in
Figure 12, the multilevel models performed significantly better than the tag-specific
and tag-independent models (p < 0.001). This follows our assertion that the multi-
level models combine the best aspects of the tag-specific and tag-independent models.

The relative advantages of nonlinear versus linear vary according to the specific
model. For the multilevel models, the nonlinear model performed better than the
linear model by a statistically significant (p < 0.001) margin. For the tag-specific
models, the nonlinear model also performed significantly better than the linear model

17We evaluated the models using ratings collected from the pilot survey.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:25

Fig. 12. Performance of each model using tenfold cross-validation on the relevance ratings from the main
survey. All models performed significantly better than a baseline model that used the mean rating (MAE
= 0.36). Differences in MAE are statistically significant (p < 0.05), with the exception of the difference
between the linear tag-specific model and the nonlinear tag-independent model.

Fig. 13. Performance of each individual feature based on correlation with tag relevance ratings from the
main survey. The all feature represents the prediction from the best performing regression model, which
uses all the other features as inputs. All differences are statistically significant (p < 0.001) except for the
differences between text-freq, tag-lsi-sim, and tag-applied.

(p < 0.001). However, the nonlinear version of the tag-independent model performed
worse than the linear version by a small but statistically significant (p < 0.001)
margin.

One possible reason why the nonlinear models performed better in the tag-specific
and multilevel case is that these models are able to capture tag-specific differences in
the nature of the nonlinear relationship between feature values and tag relevance. For
tags that exhibit a continuous range of relevance values, for example, funny, exciting,
or violent, the relationship between feature values and tag relevance is likely to fol-
low a relatively smooth curve. For tags that describe binary attributes, for example,
based on a play, oscar, or foreign, the relationship between feature values and tag rel-
evance may be closer to a step function. Depending on the model coefficients, the logit
link function can approximate both types of relationships. Since the tag-independent
model uses the same coefficients for all tags, it is not able to capture these tag-specific
differences in the shape of the curve.

Figure 13 shows the strength of individual features based on their correlation with
the survey ratings18. The metafeature regress-tag had the highest correlation with
the ratings, to be expected since this feature combines several of the other features.

18We excluded the features tag-count and tag-share from the final model as discussed in Section 4.4.4.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:26 J. Vig et al.

Table III. Pairwise Correlations Between Features

tag-applied tag-lsi-sim text-freq text-lsi-sim avg-rating rating-sim regress-tag

tag-applied - 0.689 0.390 0.400 0.156 0.356 0.396

tag-lsi-sim 0.689 - 0.493 0.485 0.070 0.438 0.446

text-freq 0.390 0.493 - 0.664 −0.007 0.318 0.378

text-lsi-sim 0.400 0.485 0.664 - 0.025 0.314 0.399

avg-rating 0.156 0.070 −0.007 0.025 - 0.214 0.387

rating-sim 0.356 0.438 0.318 0.314 0.214 - 0.678

regress-tag 0.396 0.446 0.378 0.399 0.387 0.678 -

text-lsi-sim was the next strongest feature, which is not surprising given the high
volume of textual data (see Table I). The features tag-applied and tag-lsi-sim were
nearly as strong as the text-lsi-sim, despite the fact that the tagging data was rela-
tively sparse (see Table I). This suggests that individual tag applications can provide
a relatively strong signal of relevance.

The rating-sim feature was weaker than the other tag-based and text-based fea-
tures, but still showed a fairly strong correlation. The avg-rating feature was the
weakest based on its low overall correlation with the survey ratings. However, as sug-
gested earlier, the predictive power of avg-rating seems to be largely tag-specific. For
example, the correlation between avg-rating and relevance ratings for good acting was
0.625, while the correlation between avg-rating and ratings for predictable was -0.418.
Thus the avg-rating may provide a stronger signal of tag relevance for the tag-specific
and multilevel models than the tag-independent models.

Table III shows the pairwise correlations between each of the features. tag-lsi-sim
and tag-applied correlate most strongly; this follows from the fact that they both de-
pend on tag applications. Although tag-lsi-sim(t, i) is calculated based on all tags ap-
plied to i, this set of tags may include t, which is also used to compute tag-applied(t, i).
regress-tag correlated strongly with rating-sim, which is one of the features used
to compute regress-tag. The avg-rating feature showed the weakest overall correla-
tion with other features, consistent with the fact that it was the weakest predictor
overall.

4.5. STEP 5: Predict Tag Relevance

We use the nonlinear multilevel model to predict tag relevance since this model
achieved the lowest mean absolute error in our evaluation (see Section 4.4.5). We train
the final model using the full set of relevance ratings from the survey.

5. MOVIE TUNER

In this section, we discuss the design of the Movie Tuner application introduced in
Section 1.1. Movie Tuner is inspired by a class of applications called example-critiquing
systems, which enable users to navigate an information space by critiquing specific ex-
amples (see Section 2.3). For example, in the Entree system, users critique restaurants
based on price (“less expensive”), style (“more traditional”), atmosphere (“quieter”),
and other criteria [Burke et al. 1997]. In Movie Tuner, users critique items with re-
spect to tags.

We focus on two primary interactions in Movie Tuner: applying critiques refers to
how users tell the system what they would like to change about an item (“I’d like
something less violent than Reservoir Dogs”), and responding to critiques describes
how the system chooses new items in response to a user’s critiques (“Here are the
movies similar to Reservoir Dogs, but less violent...”).

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:27

5.1. Applying Critiques

Users apply critiques to tell the system what they wish to change about a particular
item, for example, “less violent” or “more action”. We now outline the design space for
how users may apply critiques, and we discuss our design decisions.

5.1.1. Critique Dimensions. Critique dimensions represent the dimensions along which
users may critique an item. In Movie Tuner, tags serve as critique dimensions. For
example, some of the tags on MovieLens are action, violent, and quirky. With these
tags as critique dimensions, a user might request a movie that has “more action”, is
“less violent”, or is “more quirky”. We include all 1,570 tags in the genome as critique
dimensions.

As shown in Figure 1, Movie Tuner displays tags in a list, with a relevance meter
next to each tag indicating its relevance to the current item. (We discuss later how the
system chooses the tags to display.) Other visualizations should work as well, such as
a tag cloud with varying font size [Green et al. 2009]. We used the relevance meter to
more precisely represent the 0 to 1 relevance scale.

5.1.2. Critique Direction. In most example-critiquing systems, users critique an item by
specifying a direction along a critique dimension, for example, “less expensive”. How-
ever, some example-critiquing systems also enable the user to provide a magnitude, for
example, “at least $100 cheaper” [Chen and Pu 2006]. Although specifying the magni-
tude gives users more control over their critiques, it requires more fine-grained input
from the user.

In Movie Tuner, we chose to use a direction-only approach. Enabling users to spec-
ify the magnitude of the critique, perhaps with a slider, would give users additional
control, but we chose the direction-only approach because it requires lower cognitive
load. We denote an individual critique as a tuple (t, d), for tag t ∈ T and direction
d ∈ {−1, +1}, where −1 indicates less and +1 indicates more.

As shown in Figure 1, users choose a critique direction by clicking a “less” or “more”
radio button next to a particular tag. The default “ok” selection indicates that the user
does not wish to apply a critique with respect to the tag. As an alternative to the three
radio buttons, we had also considered having two checkboxes, one for “less” and one for
“more”, but found that in initial trials users felt compelled to check one box for every
tag shown. With a default selection of “ok”, users understood that they could simply
ignore a particular tag.

5.1.3. Unit versus Compound Critiques. A unit critique is constrained to a single critique
dimension (“less violent”), while a compound critique [Smyth et al. 2004; Zhang and Pu
2006] spans multiple dimensions, (“less violent and more action”). Although compound
critiques enable faster navigation, they also require more work from the user at each
step.

Movie Tuner supports both unit and compound critiques. To apply a compound cri-
tique, users must explicitly lock the original critique to keep it in effect as they choose
additional critiques (see Figure 1); otherwise, the original critique will be reset to the
“ok” position when they select additional critiques. We require explicit locking because
in initial trials users often forgot to undo their original critique before selecting other
unit critiques. As a result, the critiques became increasingly complex and did not
match the users’ intentions.

5.1.4. System-Suggested versus User-Initiated Critiques. In systems that provide a small
number of critique dimensions, a common design choice is to display all critique di-
mensions and let users choose from them when applying critiques. In Movie Tuner,

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:28 J. Vig et al.

however, the number of critique dimensions (i.e., tags), far exceeds the available screen
space. We considered two alternatives: in a system-suggested model, the system dis-
plays a small set of possible tags and users choose among them, while in a user-
initiated model, users must enter the tags they wish to use in critiques.

We chose a mixed-initiative model where users may either choose from a set of
system-suggested tags or enter additional tags of their own. We chose to suggest tags
because studies have shown some users have difficulty thinking of tags [Sen et al.
2006]. As shown in Figure 1, Movie Tuner displays 5 system-selected tags for each
item. We display 5 tags per item in order to provide users with a variety of choices
while conserving screen space.

Users may also enter tags not suggested by the system in an auto-complete text box
(“Enter selection”) below the tags currently displayed. However, users may only enter
tags that are among the 1,570 tags included as critique dimensions. Once entered,
the tag is displayed above, along with its relevance meter as well as radio buttons for
setting the critique direction. Users may also use the text box simply to inquire about
the relevance of a tag to an item (“How realistic is The Bourne Identity?”).

5.1.5. Tag Selection Algorithm. We now describe how we choose the tags to display for
a particular item. We select tags based on three objectives. We choose tags that are
valuable for critiquing an item because the primary purpose of displaying the tags is
to help users apply critiques; we choose popular tags, because the tags should be ones
that users care about; and we choose diverse tags because an orthogonal set of tags en-
ables more efficient navigation. We now define metrics for each of these objectives, and
we describe a multi-objective optimization algorithm for selecting the tags to display.

Critique value. We define two metrics for evaluating how useful a tag is for cri-
tiquing a particular item. One metric favors descriptive tags, for example, violent is
highly descriptive for Reservoir Dogs because it is an extremely violent movie. The
other metric favors tags that discriminate among the space of similar items, for ex-
ample, action is a discriminating tag for Reservoir Dogs, because many similar movies
have either more action (e.g., Kill Bill Vol. 1) or less action (e.g., Sexy Beast).

To measure how descriptive a tag t is with respect to an item i, we simply use rel(t, i),
the relevance of t to i (see Section 3.1). To measure how discriminating a tag t is with
respect to an item i, we define a metric called critique entropy, which measures how
evenly t separates the items neighboring i.

To compute critique entropy for tag t relative to item i, we partition the set N of
neighbors of i (defined in Section 5.2.3) into 3 subsets N+1, N−1, and N0. N+1 comprises
neighbors of i that satisfy the critique “more t”, N−1 comprises neighbors of i that
satisfy the critique “less t”, and N0 comprises the remaining neighbors of i. Formally,

N+1 = { j| j ∈ N, rel(t, j) > rel(t, i) + 0.25},
N−1 = { j| j ∈ N, rel(t, j) < rel(t, i) − 0.25},
N0 = N − N+1 ∪ N−1.

We chose the value of 0.25 based on our qualitative analysis over a series of test
cases.

This is a simplified version of the critique satisfaction model presented in
Section 5.2, and is only used for the purpose of computing critique entropy.

We define critique entropy to be the Shannon entropy of the distribution of items
over N+1, N−1, N0. Formally,

critique-entropy(t, i) =
∑

d∈{+1,−1,0}
−|Nd|

|N| · log
(|Nd|

|N|
)
.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:29

Just as Shannon entropy measures the evenness of a distribution, critique entropy
measures how evenly the critiques associated with a tag divide the space of neighbor-
ing items.

Popularity. We measure tag popularity by the number of distinct users who have
applied a tag t, denoted as popularity(t). We apply a log transform to popularity to
make the distribution more normal.

Diversity. We measure the diversity of a set of tags based on how dissimilar the
tags are to one another. To measure similarity between two tags t and u, we take the
cosine similarity of their relevance values across all items in I, which we denote as
tag-sim(t, u). Later we will show how we use this tag similarity metric to choose a
diverse set of tags.

Multi-objective optimization. Since we wish to satisfy three different objectives
(critique value, popularity, diversity) simultaneously, we express the problem of choos-
ing tags as a multi-objective optimization problem [Fletcher 1981]. One approach for
solving multi-objective optimization problems is to define an aggregate objective func-
tion that takes all objectives into account and computes a single utility value for each
candidate solution. One may also frame the problem as a constrained optimization
problem where some of the objectives are expressed as constraints while others are
included in the objective function.

We chose to express the tag selection problem as a constrained multi-objective opti-
mization problem over the space of all tag sets of size 5. We define an aggregate objec-
tive function that evaluates each candidate tag set based on the objectives described,
and we also set constraints to ensure that the chosen tag set satisfies each objective to
a minimal degree. We constructed two versions of the optimization problem, one that
measures critique value based on tag relevance (favors descriptive tags) and one that
measures critique value based on critique entropy (favors discriminating tags).

We chose the specific problem formulation that follows based on a series of trials
with various objective functions and constraint combinations. We did not include di-
versity in the objective function because we found that simply setting a constraint
based on maximum pairwise similarity between tags produced sufficiently diverse tag
sets. We combine popularity and critique value in the objective function by taking
their product. We preferred this approach to a weighted sum because, since it is scale
invariant, it requires no parameter estimation. We then add these values for all tags
in the set in order to produce a single value for the entire set.

Problem formulation. Given an item i, find the set of tags S ⊂ T that maximizes
the following objective function:

maximize
S

{∑
t∈S

critique-value(t, i) · log(popularity(t))
}

subject to |S| = 5
popularity(t) ≥ 50 ∀t ∈ S
tag-sim(t, u) < 0.5 ∀t, u ∈ S, t
= u.

We designed two versions of the objective function, one where critique-value(t, i) =
rel(t, i) (favors descriptive tags), and one where critique-value(t, i) = critique-entropy

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:30 J. Vig et al.

Table IV. Comparison of Tag-Selection
Algorithms

Descriptive Discriminating
sci-fi (0.99) fantasy (0.50)

comedy (0.98) space (0.67)
action (0.95) superhero (0.37)

adventure (0.85) future (0.35)
comic book (0.75) tense (0.38)

Tags chosen for Men in Black by each
tag-selection algorithm. Relevance val-
ues are shown in parentheses.

(t, i) (favors discriminating tags). In the latter case, we added the following
constraint19:

critique-entropy(t) ≥ 0.325 ∀t ∈ S.

Table IV shows an example of the tags each version generates.
Because finding exact solutions to combinatorial optimization problems is compu-

tationally expensive, we designed a greedy algorithm to find an approximate solution.
The algorithm begins with an empty set of tags, then iteratively adds the tag that
maximizes the objective function subject to its constraints, stopping when the size of
the tag set equals 5.

5.2. Responding to Critiques

After a user critiques an item, the system must respond by retrieving new items that
satisfy the critique. In this section, we describe the algorithm for responding to cri-
tiques on Movie Tuner. The algorithm chooses items based on two objectives: (1) the
items should be sufficiently different along the critique dimension, and (2) the items
should be similar overall to the original item. We first define an objective measure of
critique distance, the difference between items along the critique dimension. We then
define a measure of the similarity between items. Finally, we present an algorithm
that chooses items based on satisfying these two metrics simultaneously.

5.2.1. Critique Distance. Users specify the direction of their critiques, but the system
must determine how far to move in that direction. For example, if a user asks for
a movie with less action than Independence Day, the system must decide whether to
choose a movie like Star Trek: Generations, which still has a reasonable amount of
action, or a movie like Contact, which has very little action.

To formalize these concepts, we introduce a metric called critique distance that mea-
sures the difference in tag relevance between two items with respect to a particular
critique. For example, if a user applies the critique “less action” to Independence Day,
then the critique distance to Star Trek: Generations is rel(action, Independence Day) −
rel(action, Star Trek: Generations) = 0.97 − 0.46 = 0.51. Formally, if ic is the critiqued
item, ir is the retrieved item, and (t, d) is the critique with tag t ∈ T and direction
d ∈ {−1, +1}, then

critique-dist(ic, ir, t, d) = max(0, (rel(t, ir) − rel(t, ic)) · d).

To determine the appropriate critique distance when choosing new items, we
define a critique satisfaction metric that determines how strongly an item satisfies a

190.325 is the Shannon entropy of the distribution {0.9, 0.1, 0.0}.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:31

critique based on critique distance. In the following we define two alternative critique
satisfaction metrics: linear-sat and diminish-sat. In Section 5.2.3, we describe how
we use these critique satisfaction metrics in conjunction with item similarity to sort
critique results.

linear-sat. The linear critique satisfaction model, linear-sat, assumes that critique
satisfaction is proportional to critique distance. This model assumes that greater cri-
tique distance is always better and that the rate of improvement stays constant as the
critique distance increases. This model suggests that users want to move as far as
possible along the critique dimension.

Formally, if ic is the critiqued item, ir is the retrieved item, and (t, d) is the critique,
t ∈ T, d ∈ {−1, +1}, then

linear-sat(ic, ir, t, d) = critique-dist(ic, ir, t, d).

diminish-sat. The diminishing returns model, diminish-sat, also assumes that
greater critique distance is better, but that the rate of improvement decreases as the
critique distance increases. This model suggests that users want a certain amount of
change along the critique dimension, but that differences beyond that threshold have
little value. Formally,

diminish-sat(ic, ir, t, d) = 1 − e−5·critique-dist(ic,ir,t,d).

This formula is based on the negative exponential utility function. We chose the
value of -5 based on qualitative analysis over a series of 30 test cases. This value
tended to produce critique results that were noticeably different along the critique
dimension, but not as different as those generated from the linear model.

5.2.2. Item Similarity. When responding to a critique, the system should choose items
that satisfy the critique, but are otherwise similar to the original item. One approach
for measuring similarity between items is to use a domain-specific similarity metric.
For example, in movie recommenders like MovieLens, a common similarity metric is
the ratings correlations between movies. Alternatively, one could measure similarity
of items based on the similarity of their tag genomes. We prefer the latter approach be-
cause it is domain-independent and because the dimensions (i.e., tags) used to critique
items are the same ones used to assess similarity. This means that items will tend to
be similar along the dimensions visible to users.

We define the similarity between items i and j as the weighted cosine similarity of
their tag genomes Gi and Gj (see Section 3.1). We used a weighted version of cosine
similarity to account for the fact that some tags may be more important than others in
determining similarity between items.

We denote the weighted cosine similarity between two vectors x and y based on
weight vector w as

cos(x, y,w) =

∑
k=1,...,n wk · xk · yk√(∑

k=1,...,n wk · x2
k

) ·
√(∑

k=1,...,n wk · y2
k

) .

We assign weights to tags based on two criteria: tag popularity and tag specificity. We
assign more weight to popular tags because they reflect dimensions that more users
care about. We define tag popularity of tag t as the number of users who have applied
t, denoted as popularity(t). We apply a log transform to make the distribution more
normal.

We also assign higher weight to tags that are more specific, because specific tags
can more uniquely identify similarities between items. For example, if two movies

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:32 J. Vig et al.

have the tag dark comedy in common, they are more likely to be similar than if they
simply had the tag comedy in common. We measure tag specificity based on a modified
version of inverse document frequency, a metric used in the tf-idf weighting scheme
to assess term specificity [Salton and McGill 1983]. In our case, we define doc-freq(t)
as the number of items where the relevance of t is greater than 1/2. We apply a log
transform to the document frequency to bring it closer to a normal distribution.

Putting all of this together, we define the similarity between items i and j as

sim(i, j) = cos(Gi, G j,w),

where wk =
log(popularity(tk))

log(doc-freq(tk))
.

For all of the computations that follow, we normalize similarity values by subtract-
ing the average similarity of all item pairs (0.61). Normalizing in this way yields
similarity values with greater proportional variation, which helps balance the ef-
fects of similarity versus critique distance in the algorithm discussed in the next
section.

5.2.3. Algorithm for Responding to Critiques. We now describe an algorithm that uses the
preceding metrics to choose items in response to user critiques. Our general approach
is to display a small set of highly relevant results, but let users explore a larger
result set if they wish. The interface design reflects this approach: critique results are
displayed in a scrollable window sorted in descending order of goodness-of-fit to the
critique, as shown in Figure 1.

The algorithm has two steps: a filtering step that establishes the basic requirements
for an item to be included in the critique results and a sorting step that orders the
remaining items in descending order of goodness-of-fit to the critique.

Filtering. As discussed, the system must choose items that are sufficiently differ-
ent along the critique dimension, but are similar overall to the original item. Accord-
ingly, the algorithm filters items based on both objectives. Filtering by similarity has
the added benefit that it reduces the number of items to evaluate when responding to
critiques of a particular item, enabling the data to be stored client-side.

— Filtering based on critique distance. Given a critiqued item ic, tag t, direction d ∈
{−1, +1}, any result ir must satisfy critique-dist(ic, ir, t, d) > 0.

— Filtering based on overall similarity. Given a critiqued item ic, any result ir must
be among the k-nearest neighbors of ic, based on the similarity metric defined in
Section 5.2.2. We considered setting a minimum similarity value instead of using
similarity rank, but found that the range of similarity scores varied between items.
We chose a value of k = 250 because items outside that range tended to be consid-
erably different from the critiqued item, and this value produced sufficiently long
results lists to satisfy most users.

Sorting. The goal of the sorting step is to identify the items that most strongly
satisfy the critique based on critique distance and are most similar to the original
item. We sort results using a metric called critique fit that combines both objectives.

Given a critiqued item ic, retrieved item ir, tag t, direction d ∈ {−1, +1},
critique-fit(ic, ir, t, d) = critique-sat(ic, ir, t, d) · sim(ic, ir

)
.

We implemented two versions of the sorting algorithm, one where critique-sat =
linear-sat, and one where critique-sat = diminish-sat. The choice of function deter-
mines the trade-off between critique distance and overall similarity. When critique-sat

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:33

Table V. Comparison of Critique Satisfaction Algorithms

Linear Diminishing Returns
Aladdin (1992) Shrek (2001)
Sword in the Stone (1963) Shrek 2 (2004)
Toy Story (1995) Toy Story 2 (1999)
Robin Hood (1973) Aladdin (1992)
Looney, Looney, Looney Bugs
Bunny Movie (1981)

Shrek the Halls (2007)

Top-5 results for the critique “more classic than Shrek the Third”
for both versions of the algorithm. The linear model favors more
classic movies while the diminishing returns model favors simi-
lar movies.

= linear-sat, the trade-off between critique distance and overall similarity is the
same at any critique distance. When critique-sat = diminish-sat, the trade-off favors
increased similarity over increased critique distance as critique distance increases.
Table V shows sample results for both versions of the algorithm.

Compound and null critiques. The previous definition applies to unit critiques. For
compound critiques, we simply take the product of the critique fit values for each of
the individual critiques. When no critique has been applied, we order results based on
similarity only.

5.3. Design of Field Study

We conducted a field study of Movie Tuner on the MovieLens Web site, in which we
empirically evaluated Movie Tuner based on activity logs and survey data.

We added the Movie Tuner interface to two screens on MovieLens: the movie details
page and the movie list page. The movie details page displays detailed information
about a particular movie including cast, director, a Netflix synopsis, a tag cloud for the
movie, and Movie Tuner. The movie list page is used to display any list of movies, in-
cluding search results and personalized recommendations. We added an icon users can
click to see Movie Tuner. We do not show Movie Tuner for the least popular movies (<
50 ratings), because these movies tended to have too little data to accurately compute
the tag genome. In total, we display Movie Tuner for 8,871 distinct movies.

The primary data source for our analyses comprised activity logs collected during
a 7-week period that Movie Tuner was in place, running from July 14, 2010, through
September 1, 2010, and the 7-week period just before the launch. These logs track all
activity on Movie Tuner, including page views20, critiques applied, and items selected.

We used a between-subjects design so that subjects could respond to survey
questions based on their overall experience in a single experimental condition. Each
user was assigned to one of four experimental groups based on two manipulated
factors (2 x 2). One factor determined how Movie Tuner selected tags to display
for an item: specifically, whether the algorithm favored descriptive tags (rel metric)
or discriminating tags (critique-entropy metric) as described in Section 5.1.5. The

20We did have one logging problem during the time of the experiment. We did not lose any Movie Tuner
data, but due to a data collection bug, movie detail page view data for pages that did not include Movie
Tuner was lost between 07/22/10 and 7/29/10 and between 08/17/10 and 08/30/10. We believe this page view
data would have been similar to the page view data that was correctly collected, so the lost data should not
substantively affect the results.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:34 J. Vig et al.

Table VI. Survey Results

Statement (abbreviated) μ % agree % disagree
I would like the Movie Tuner feature to remain. 4.2 79 6
Movie Tuner is fun to use. 3.9 74 9
I like having the ability to specify critiques. 4.3 89 4
The tags shown helped me learn about the movie. 3.5 59 12
I liked seeing the tags. 3.9 72 6
The tags made sense to me. 4.0 81 8
The similar movies helped me discover movies I had not seen. 3.4 54 22
The similar movies helped me find movies I was interested in. 3.8 67 10
The similar movies were actually similar to the main movie. 3.6 60 7

Applying critiques helped me to discover movies I had not
seen.

3.5 65 19

Applying critiques helped me find movies I was interested in. 3.7 71 11
Movies displayed in response to my critiques made sense. 3.8 68 8

Survey questions and aggregated responses (5-point Likert scale). Percent (dis)agree equals the
number of (dis)agree or strongly (dis)agree responses divided by total number of responses. For
questions below the double line, we only included responses from users who actually applied cri-
tiques (71% of respondents.)

other factor determined how Movie Tuner chose items in response to a critique:
specifically, whether the algorithm used the linear (linear-sat) or the diminishing
returns (diminish-sat) model of critique distance as discussed in Section 5.2.1.

On 08/26/10, we invited 910 Movie Tuner users to an online survey, of whom 160
(18%) participated. We included users who had viewed Movie Tuner at least once and
consented to participate in studies on MovieLens. In the survey, users responded to
a series of statements, summarized in Table VI, using a 5-point Likert scale21. For
each statement, we showed subjects a screenshot of the Movie Tuner interface for the
movie Pulp Fiction in order to help them recall their experience with Movie Tuner.
We recognized that users could be influenced by the example shown to them when an-
swering questions; therefore we displayed screenshots for each subject that matched
how the interface would look given their experimental group. Additionally, we em-
phasized to subjects that they should respond based on their experience with Movie
Tuner.

5.4. Results

During the 7-week field trial, 2,531 users viewed the Movie Tuner interface a total of
49,099 times, and 1,037 users applied a total of 12,298 critiques. Overall feedback on
MovieLens was positive: 89% of survey respondents liked being able to apply critiques,
74% found Movie Tuner fun to use, and 79% wanted Movie Tuner to remain available
on MovieLens. Daily page views of the movie detail page increased by 52% (p < 0.001,
t-test). One user commented, “The best thing to come by in MovieLens (besides the
product itself). Strongly recommended this to my friends and some picked MovieLens
up just because of this addition. Love it!”

In this section, we empirically evaluate users’ interactions with Movie Tuner, based
on activity logs and user self-report. We first examine how users apply critiques in
Movie Tuner, based on the types of tags they choose, how they choose critique direction,

211 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:35

Table VII. Most Popular System-Suggested Tags

Top 10 positive frac
nudity (full frontal) 0.19
nudity (full frontal) 0.15
sexuality 0.11
scary 0.09
nudity (topless) 0.09
lesbian 0.08
black comedy 0.08
psychological 0.07
dark comedy 0.07
cyberpunk 0.07

Top 10 negative frac
coen brothers 0.08
religion 0.07
holocaust 0.07
world war ii 0.06
christmas 0.06
western 0.06
pixar 0.05
suicide 0.05
vampires 0.05
police 0.04

System-suggested tags most likely to be used in each critique
direction, based on the fraction of times the tags were displayed
that users chose them for critiques.

and whether they use compound or unit critiques. We then explore how users interact
with items displayed in response to their critiques.

5.4.1. Applying Critiques.

Choosing tags. For 91% of critiques, users chose system-suggested tags rather than
entering their own tags. This is consistent with interaction models suggesting people
prefer recognition over recall [Smith et al. 1990]. Besides facilitating critique applica-
tion, the system-selected tags provided other benefits: 72% of respondents like seeing
the tags in Movie Tuner, and 59% said the tags helped them to learn about the movie
(compared to 12% who felt the tags did not help them learn).

As discussed in Section 5.1.5, we implemented two algorithms for choosing tags, one
that favored descriptive tags and one that favored discriminating tags. Survey results
show that more subjects in the descriptive-tags group (87%) felt the system-suggested
tags made sense to them compared to subjects in the discriminating-tags groups (74%).
The differences are statistically significant both in percent agreement (p < 0.05, Z-test
of proportions) and mean response (p < 0.05, t-test). We found no other statistically
significant differences in survey responses between the two groups.

We compared critiques applied by users in each group, and we found that users
in the discriminating-tags group chose a positive (“more”) direction for 71% of their
critiques compared to 66% for users in the descriptive-tags group (p < 0.01, Z-test
of proportions). This may be explained by the fact that the tags displayed by the
descriptive-tags algorithm had a mean relevance of 0.81 to the movie displayed, while
those displayed by the discriminating-tags algorithm had a mean relevance of only
0.48. As we will discuss later, users were more likely to apply critiques in a positive di-
rection when tag relevance was low. However, we found no significant differences in the
number of critiques applied or the proportion of users who applied critiques in the two
groups.

With the exception of the differences just described, users in the two tag-selection
groups exhibited similar behavior and expressed approximately the same level of sat-
isfaction with Movie Tuner. This shows that Movie Tuner can support a range of
tag-selection algorithms, and system designers might wish to explore algorithms that
incorporate other objectives. For example, a system might choose a set of tags that
capture a range of moods or it might choose tags that steer users toward items that
are otherwise hard to find.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:36 J. Vig et al.

Table VIII. Most Popular User-Entered Tags

Top 10 positive count
nudity 36
comedy 32
mystery 30
nudity (topless) 29
romance 29
sex 28
action 26
surreal 21
funny 18
erotic 16

Top 10 negative count
comedy 21
violence 9
violent 8
drugs 5
horror 5
sex 5
cheesy 4
dark 4
nudity 4
predictable 4

User-entered tags most frequently used in each critique
direction.)

Table VII shows the system-suggested tags users were most likely to choose in each
critique direction22. For positive critiques, many of the top-10 tags had sexual themes;
for negative critiques, many of the tags described sensitive topics such as religion,
holocaust, or suicide.

Users entered their own tag rather than choose a system-selected tag for 9% of
critiques. Table VIII shows the most popular user-entered tags for each critique direc-
tion. For positive critiques, the top-10 tags reflect similar themes to what we saw for
the system-selected tags. For negative critiques, several tags mirror the criteria used
to determine MPAA ratings (violence, drugs, sex, nudity), suggesting that some users
are seeking to avoid movies with content they consider objectionable perhaps because
they wish to find movies appropriate for a younger audience. In both directions, the
user-entered tags appear to be more general than the system-selected tags, suggesting
that users may find it easier to recognize specific tags than to recall them.

Choosing direction. Users applied 68% of their critiques in the positive (“more”)
direction compared with 32% in the negative (“less”) direction (p < 0.001, Z-test
of proportions). We expected that users would be more likely to select “more” for
low-relevance tags compared to high-relevance tags, since there is greater distance
to travel in the positive direction. To test this hypothesis, we divided critiques into
three buckets, based on the relevance of the critique tag t to the critiqued item i:
low relevance (rel(t, i) < 1

3), medium relevance (1
3 ≤ rel(t, i) < 2

3), and high relevance
(rel(t, i) ≥ 2

3). The proportion of positive critiques in each bucket were 70.2%, 69.7%,
and 66.1%, respectively; the differences between the high-relevance bucket and the
other buckets were statistically significant (p < 0.01, Z-test of proportions), but the
difference between the low- and medium-relevance buckets were not. These results
show that lower tag relevance does correspond with a greater frequency of positive
critiques, but that the effect is fairly weak. Among critiques with rel(t, i) > 0.95, users
still chose a positive direction 66% of the time. Future research should explore why
users choose positive critiques most of the time: is it because tags tend to reflect at-
tributes that people like or because users find it more natural to navigate in a positive
direction?

22Based on the number of times users applied the tag in that direction divided by the number of times the
tag was displayed. We only included tags displayed at least 100 times.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:37

Unit versus compound critiques. Compound critiques were popular, comprising
24% of all critiques applied. 37% of users who applied a critique applied at least
one compound critique. Several subjects who didn’t realize compound critiquing was
available asked for the feature in their comments. One subject wrote, “I would like the
Movie Tuner to permit adjusting two or more qualities at the same time. For example,
if I am at the tuner for the movie ‘The Girl Who Played with Fire’, I would like to be
able to search for movies that are both ‘less violent and less sexually graphic’.”

5.4.2. Critique Results. We also analyzed how users interacted with the results that
Movie Tuner displayed in response to their critiques. On average, users clicked on
1.2 results for every movie they ritiqued23. Survey results indicate that users were
satisfied with the critique results. 68% of subjects who applied critiques thought the
critique results made sense, 71% felt that applying critiques helped them find movies
they were interested in, and 65% thought that applying critiques helped them find
movies they had not seen. To make it easier to find movies they had not seen, several
users asked for the option to exclude movies they had already rated.

We compared how users in the linear and diminishing-returns groups (see Section
5.2.1) responded to critique results. We found no statistically significant differences
between the groups based on user self-report or observational data such as number
of click-throughs. This suggests that Movie Tuner can support a range of approaches
for responding to users’ critiques. System designers might wish to incorporate other
objectives when choosing items in response to critiques, such as predicted item rating
or diversity of items.

Besides displaying movies in response to users’ critiques, Movie Tuner also displays
an initial list of “similar movies” when the user first visits a movie page. This feature
proved popular: users clicked on the “similar movies” 12,626 times. Survey results
indicate that users liked seeing the similar movies. 67% of subjects thought the similar
movies helped them find movies they were interested in, and 54% thought it helped
them to find movies they hadn’t seen (versus 22% who did not think it helped find
movies they hadn’t seen). Further, 60% thought that the movies shown were actually
similar to the main movie (versus 7% who did not), suggesting that the similarity
metric worked properly.

6. APPLICATIONS OF THE TAG GENOME

Movie Tuner is just one example of the type of application that the tag genome can
support. In this section, we outline the broader space of applications of the tag genome.

6.1. Applications Motivated by Vector Arithmetic

Many applications of the tag genome can be framed in terms of vector arithmetic, as
illustrated in Figure 14. Figure 14(a) shows how the critiquing interaction in Movie
Tuner can be interpreted as adding a vector of tag relevance differences (“more action
and less dialogue”) to the tag genome of the starting item (Pulp Fiction) to find the
result (Kill Bill, Vol. 1), which has a tag genome that is close to the sum of these two
vectors.

An inverted form of the same equation can be used to compare items, as shown
in Figure 14(b). In this case, the user specifies two items (The Bourne Supremacy and
Mission Impossible), and the system computes the differences in the tag genomes of the
items (“more gritty, more realistic, less Tom Cruise”). This type of comparison can help
users understand the trade-offs between items when making decisions [Jedetski et al.

23This count only includes results clicked while a critique was in place; users also clicked on the similar
movies shown when no critique was in place.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:38 J. Vig et al.

Fig. 14. Applications of the tag genome inspired by vector arithmetic.

2002; Pu and Chen 2005]. The tag genome can also reveal similarities between items
[Green et al. 2009], for example, that The Bourne Supremacy and Mission Impossible
both share the qualities action, thriller, and spies. Various applications, for example,
recommender systems, display items that are similar to some reference item; research
shows that users also want to understand how these items are similar [Hingston and
Kay 2006; Tintarev and Masthoff 2007; Vig et al. 2009].

As shown in Figure 14(c), another application is to describe an item (Adventureland)
in terms of a familiar item (Superbad) plus a vector of tag relevance differences (“less
funny, more romance”). The familiar item could be an item that the user has rated
in the past or simply a popular item that is familiar to most users. The advantage of
describing one item in terms of another is that it provides a very compact description
compared to standard textual descriptions.

6.2. Extensions to Traditional Tagging Applications

Search. In traditional tag search, a user keys in a tag and the system retrieves
items to which that tag has been applied. The tag genome enables users to more pre-
cisely specify their search criteria, indicating not only the tag they are interested in,
but also the desired level of that tag, for instance, “medium level of action or less”.
Users could save these searches and use them as context-sensitive filters. For exam-
ple, a user might have a filter for movies to watch with her young children (e.g., “no
violence”), but another for choosing movies to watch with her teenage brother (e.g.,
“medium level of violence or lower”).

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:39

Browse. Traditional tagging systems support various browsing interfaces; users
can browse the tags associated with a particular item, and then browse other items by
clicking on one of the tags. Faceted navigation [Yee et al. 2003] provides a very different
browsing experience that allows users to filter items by choosing options within various
facets such as size (small, medium, large), price (less than $10, $10–$20, $20+), or loca-
tion (Mexico, France, Egypt). Past work has explored faceted browsing systems using
tags as facets [Feinstein and Smadja 2006]. The tag genome can extend these systems
by representing tags as continuous dimensions rather than binary attributes. Facets
based on continuous dimensions can provide unique forms of interaction [Teevan et al.
2008]; instead of displaying check boxes next to each facet (i.e., tag) the system could
provide slider controls for users to specify a range of relevance values, similar to the
approach described by Shneiderman [1994]. Alternatively, the system could offer a set
of discrete choices within each facet by binning relevance values (e.g., low, medium,
high) [Teevan et al. 2008].

Item Summarization. Tagging systems often visualize the set of tags applied to
an item as a cloud or list [Bateman et al. 2008; Halvey and Keane 2007; Rivadeneira
et al. 2007], providing users with a compact summarization of the item. Both types
of visualizations convey the relative importance of tags, typically based on tag fre-
quency. The most frequently applied tags are shown at the top of a tag list or dis-
played with the largest font in a tag cloud. The 0–1 relevance scale in the tag genome
opens up the possibility of visualizing tag relevance on an absolute scale. For example,
Movie Tuner displays “relevance meters” next to each tag (see Figure 1). Many other
visual metaphors are possible, such as sliders on a sound mixer or dials on a volume
control.

Tag clouds and lists only show tags that users have applied to an item, reflecting
the sparse nature of the traditional tagging model as discussed in Section 1.2. The tag
genome, in contrast, encodes tag relevance for every tag in the genome regardless of
whether the tag has been applied to the item. This dense representation can support
new forms of item summarization. For example, a system might display a scrollable
list with all the tags in the genome along with their relevance values, which users
could sort by factors such as relevance to the item, relevance to the user (based on
inferred preferences for the tag), or overall tag popularity. Users could also query the
relevance of particular tags, for example, by entering them in an autocomplete text box
as with Movie Tuner. Alternatively, the system could choose a small number of tags to
display based on factors such as tag relevance, diversity, or user interest, as discussed
in Section 5.1.5.

6.3. The Tag Genome as Feature Vector

We have discussed how the tag genome enhances user interaction. But it can also
support backend processes that represent items as feature vectors in order to perform
various computations. As a feature vector, the tag genome has two useful qualities:
(1) it combines data from any number of sources into a compact and diverse set of
features and (2) it is human-comprehensible. Machine learning algorithms could use
the tag genome as an input feature vector for classification or regression models. Since
these feature are human-interpretable, they can also be used to explain certain types
of models to users [Mooney and Roy 2000; Možina et al. 2004; Poulin et al. 2006; Vig
et al. 2009] or even allow users to adjust the model [Kulesza et al. 2009]. Clustering
algorithms could use the tag genome to compute similarity between items (see Section
5.2.2) as well as label the resulting clusters [Manning et al. 2008] based on the tags
with high relevance across each cluster.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:40 J. Vig et al.

7. CONCLUSION

This article introduces the tag genome, a data structure that extends the traditional
tagging model in two ways. First, the tag genome encodes a continuous notion of tag
relevance, which measures how strongly tags apply to items on a 0–1 scale. Second,
the tag genome provides a dense structure that computes the relevance of every tag in
the genome regardless of whether that tag has been applied to an item.

We presented a general machine learning approach to computing the tag genome,
which we demonstrated on the movie tagging system MovieLens. To compute the tag
genome in MovieLens, we first extracted features from user-generated content includ-
ing tag applications, text reviews, and ratings, and then we trained our learning model
using human judgments of tag relevance collected from a survey of MovieLens users.
Results showed that tag applications and the appearance of tags in text provided the
strongest signals of tag relevance. We found that hierarchical regression models most
accurately predicted tag relevance and that linear models performed nearly as well as
more complex nonlinear models.

Movies represent just one of many possible domains that might benefit from the
tag genome. The tag genome can be computed for any information space with suffi-
cient training data, along with a community that is willing to share their views of the
relationships between tags and items. System designers will want to choose a set of
training data suitable for their domain. On MovieLens, we found that text reviews and
tag applications provided the richest data for learning the tag genome, but other types
of media may be used in other domains. In the music domain, for example, one might
extract features such as tempo, volume, and pitch from audio tracks to help learn the
relevance of tags such as relaxing, upbeat, or jarring. As discussed in Section 2.1, re-
searchers have developed tag recommendation algorithms for a variety of data types
including images, songs, and videos. The same features used in those algorithms might
also be used to compute the tag genome.

In addition to defining and computing the tag genome, we showed how the tag
genome can enrich user interaction in tagging systems. We developed Movie Tuner,
a system for navigating an information space using natural language critiques based
on the tag genome. In contrast to traditional tag search, Movie Tuner lets users for-
mulate their preferences adaptively by critiquing particular examples. In contrast to
traditional example-critiquing systems, Movie Tuner builds its knowledge base auto-
matically by applying machine learning to user-contributed content, rather than by
relying on paid experts.

We approached Movie Tuner from a design perspective, exploring two design di-
mensions. First, we examined how the system should suggest tags to users. We imple-
mented two algorithms, one that favored descriptive tags and one that favored discrim-
inating tags. Survey participants felt that descriptive tags made more sense to them
than discriminating tags. Users who saw descriptive tags tended to apply fewer pos-
itive critiques, most likely because descriptive tags represented attributes that were
already fully present in the current item. Second, we explored how to choose items in
response to users’ critiques. We implemented linear and diminishing returns models
of critique satisfaction based on critique distance. We found that users were equally
satisfied and exhibited similar behavior with both approaches.

Initial tests suggest that Movie Tuner is an important and valuable tool. 89% of
subjects liked being able to critique movies, and 79% wanted Movie Tuner to remain
available on MovieLens. One user wrote, “Movie Tuner instantly made MovieLens
many times more valuable and useful for me! It generally works well and sometimes
extremely well. Please keep it available!” Over 1,000 users applied a total of 12,000
critiques, and views of movie detail pages on MovieLens increased by over 50%.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:41

Since the results show that Movie Tuner may support a range of implementations,
we encourage system designers to explore alternate designs. For example, some users
suggested they would like more fine-grained control over their critiques in Movie
Tuner. One user wrote, “As opposed to a less/more function, the ability to slide the bar
and set an amount would be welcomed.” Alternatively, system designers may explore
more organic implementations such as speech-based interfaces, for example, someone
listening to a personalized radio station could simply say “less classical” or “more mel-
low” to select a song that better fits their mood.

We believe that the tag genome can support many exciting applications across mul-
tiple domains. Tuners represent just one class of applications. In Section 6, we pro-
posed several other types of applications, including search, faceted browsing, and item
comparison. We hope that system designers will explore these and other applications
in the coming years.

ACKNOWLEDGMENTS

The authors thank Loren Terveen, Daniel Kluver, Rich Davies, Tony Lam, and the rest of GroupLens for
their feedback and assistance with this article. We thank the members of MovieLens for their participation
in the survey, as well as their feedback and suggestions for Movie Tuner.

REFERENCES
BATEMAN, S., GUTWIN, C., AND NACENTA, M. 2008. Seeing things in the clouds: The effect of visual fea-

tures on tag cloud selections. In Proceedings of the 19th ACM Conference on Hypertext and Hypermedia
(Hypertext’08). ACM, New York, NY, 193–202.

BATES, D. AND SARKAR, D. 2007. Linear mixed-effects models using S4 classes. http://CRAN.R-project.org.
BIRD, S., LOPER, E., AND KLEIN, E. 2009. Natural Language Processing with Python. O’Reilly Media Inc.
BURKE, R. 2002. Hybrid recommender systems: Survey and experiments. User Model. User-Adapted

Interac. 12, 4, 331–370.
BURKE, R. D., HAMMOND, K. J., AND YOUNG, B. C. 1996. Knowledge-based navigation of complex infor-

mation spaces. In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI’96). AAAI
Press, 462–468.

BURKE, R. D., HAMMOND, K. J., AND YOUNG, B. C. 1997. The FindMe approach to assisted browsing.
IEEE Expert 12, 32–40.

CHEN, L. AND PU, P. 2006. Evaluating critiquing-based recommender agents. In Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI’06). Vol. 1, 157–162.

DEERWESTER, S. C., DUMAIS, S. T., LANDAUER, T. K., FURNAS, G. W., AND HARSHMAN, R. A. 1990.
Indexing by latent semantic analysis. J. Amer. Soc. Info. Sci. 41, 6, 391–407.

DRUCKER, H., BURGES, C. J. C., KAUFMAN, L., SMOLA, A., AND VAPNIK, V. 1997. Support vector regres-
sion machines. In Advances in Neural Information Processing Systems, Vol. 9, 155–161.

ECK, D., LAMERE, P., BERTIN-MAHIEUX, T., AND GREEN, S. 2007. Automatic generation of social tags for
music recommendation. In Advances in Neural Information Processing Systems, Vol. 20.

FALTINGS, B., PU, P., TORRENS, M., AND VIAPPIANI, P. 2004. Designing example-critiquing interaction. In
Proceedings of the 9th International Conference on Intelligent User Interfaces (IUI’04). ACM, New York,
NY, 22–29.

FEINSTEIN, D. AND SMADJA, F. 2006. Hierarchical tags and faceted search: The RawSugar approach. In
SIGIR Conference on Research and Development in Information Retrieval Workshop on Faceted Search.
23–25.

FLETCHER, R. 1981. Practical Methods of Optimization: Vol. 2: Constrained Optimization. John Wiley and
Sons.

GELMAN, A. AND HILL, J. 2007. Data Analysis Using Regression and Multilevel Hierarchical Models.
Cambridge University Press, Cambridge, UK.

GELMAN, A., CARLIN, J. B., STERN, H. S., AND RUBIN, D. B. 2003. Bayesian Data Analysis, 2nd Ed..
Chapman & Hall/CRC.

GOLDER, S. A. AND HUBERMAN, B. A. 2006. Usage patterns of collaborative tagging systems. J. Info.
Sci. 32, 198–208.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:42 J. Vig et al.

GREEN, S. J., LAMERE, P., ALEXANDER, J., MAILLET, F., KIRK, S., HOLT, J., BOURQUE, J., AND MAK,
X. 2009. Generating transparent, steerable recommendations from textual descriptions of items. In
Proceedings of the ACM Conference on Recommender Systems (RecSys’09). ACM, New York, NY,
281–284.

GUAN, Z., WANG, C., BU, J., CHEN, C., YANG, K., CAI, D., AND HE, X. 2010. Document recommenda-
tion in social tagging services. In Proceedings of the 19th International Conference on World Wide Web
(WWW’10). ACM, New York, NY, 391–400.

GUYON, I. AND ELISSEEFF, A. 2003. An introduction to variable and feature selection. J. Machine Learn.
Res. 3, 1157–1182.

HALVEY, M. J. AND KEANE, M. T. 2007. An assessment of tag presentation techniques. In Proceedings of
the 16th International Conference on the World Wide Web (WWW’07). ACM, New York, NY, 1313–1314.

HEYMANN, P., RAMAGE, D., AND GARCIA-MOLINA, H. 2008. Social tag prediction. In Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’08). ACM, New York, NY, 531–538.

HINGSTON, M. AND KAY, J. 2006. User friendly recommender systems (honors thesis).

JEDETSKI, J., ADELMAN, L., AND YEO, C. 2002. How web site decision technology affects consumers. IEEE
Internet Comput. 6, 72–79.

JÄSCHKE, R., MARINHO, L. B., HOTHO, A., SCHMIDT-THIEME, L., AND STUMME, G. 2007. Tag recommen-
dations in folksonomies. In Proceedings of the 11th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD’07). Vol. 4702, Springer, 506–514.

KAMMERER, Y., NAIRN, R., PIROLLI, P., AND CHI, H. 2009. Signpost from the masses: Learning effects in
an exploratory social tag search browser. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI’09). 625–634.

KELLEY, C. T. 1999. Iterative methods for optimization. In SIAM Frontiers in Applied Mathematics, 18.

KOHAVI, R. AND JOHN, G. H. 1997. Wrappers for feature subset selection. Art. Intell. 97, 1–2, 273–324.

KULESZA, T., WONG, W.-K., STUMPF, S., PERONA, S., WHITE, R., BURNETT, M. M., OBERST, I., AND KO,
A. J. 2009. Fixing the program my computer learned: Barriers for end users, challenges for the machine.
In Proceedings of the 14th International Conference on Intelligent User Interfaces (IUI’09). ACM, New
York, NY, 187–196.

LINDEN, G., HANKS, S., AND LESH, N. 1997. Interactive assessment of user preference models: The auto-
mated travel assistant. In Proceedings of User Modeling’97. Springer, 67–78.

MANNING, C. D., RAGHAVAN, P., AND SCHÜTZE, H. 2008. Introduction to Information Retrieval. Cambridge
University Press, Cambridge, UK.

MARLOW, C., NAAMAN, M., BOYD, D., AND DAVIS, M. 2006. HT06, tagging paper, taxonomy, flickr, academic
article, to read. In Proceedings of the 17th Conference on Hypertext and Hypermedia (Hypertext’06).
ACM, New York, NY, 31–40.

MCCALLUM, A. AND NIGAM, K. 1998. A comparison of event models for naive bayes text classification. In
Proceedings of the Conference on Artificial Intelligence Workshop on Learning for Text Categorization.
AAAI Press, 41–48.

MCCARTHY, K., REILLY, J., MCGINTY, L., AND SMYTH, B. 2005. Experiments in dynamic critiquing. In
Proceedings of the 10th International Conference on Intelligent User Interfaces (IUI’05). ACM, New York,
NY, 175–182.

MCCULLAGH, P. AND NELDER, J. 1989. Generalized Linear Models 2nd Ed. Chapman & Hall/CRC.

MOONEY, R. J. AND ROY, L. 2000. Content-based book recommending using learning for text categorization.
In Proceedings of the 5th ACM Conference on Digital Libraries. ACM, New York, NY, 195–204.

MOŽINA, M., DEMŠAR, J., KATTAN, M., AND ZUPAN, B. 2004. Nomograms for visualization of naive
bayesian classifier. In Proceedings of the 8th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD’04). Springer-Verlag Berlin, 337–348.

PAYNE, J. W., BETTMAN, J., AND JOHNSON, E. J. 1993. The Adaptive Decision Maker. Cambridge Univer-
sity Press. Cambridge, UK.

PORTER, M. 1980. An algorithm for suffix stripping. Program: Elect. Library Info. Syst. 14, 3, 130–137.

POULIN, B., EISNER, R., SZAFRON, D., LU, P., GREINER, R., WISHART, D. S., FYSHE, A., PEARCY, B.,
MACDONELL, C., AND ANVIK, J. 2006. Visual explanation of evidence in additive classifiers. In Pro-
ceedings of the 18th Conference on Innovative Applications of Artificial Intelligence (AAAI’06). Vol. 2,
AAAI Press, 1822–1829.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

The Tag Genome: Encoding Community Knowledge to Support Novel Interaction 13:43

PU, P. AND CHEN, L. 2005. Integrating tradeoff support in product search tools for e-commerce sites.
In Proceedings of the 6th ACM Conference on Electronic Commerce (EC’05). ACM, New York, NY,
269–278.

R DEVELOPMENT CORE TEAM. 2010. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

RAUDENBUSH, S. AND BRYK, A. 2002. Hierarchical Linear Models 2nd Ed. Sage Publications, Thousand
Oaks, CA.

RIVADENEIRA, A. W., GRUEN, D. M., MULLER, M. J., AND MILLEN, D. R. 2007. Getting our head in the
clouds: Toward evaluation studies of tagclouds. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI’07). ACM, New York, NY, 995–998.

SALTON, G. AND MCGILL, M. 1983. Introduction to Modern Information Retrival. McGraw-Hill.
SALTON, G., WONG, A., AND YANG, C. S. 1975. A vector space model for automatic indexing. Comm.

ACM 18, 613–620.
SEN, S., LAM, S. K., RASHID, A. M., COSLEY, D., FRANKOWSKI, D., OSTERHOUSE, J., HARPER, F. M., AND

RIEDL, J. 2006. tagging, communities, vocabulary, evolution. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW’06). ACM, New York, NY, 181–190.

SEN, S., HARPER, F. M., LAPITZ, A., AND RIEDL, J. 2007. The quest for quality tags. In Proceedings
of the International ACM Conference on Supporting Group Work (GROUP’07). ACM, New York, NY,
361–370.

SEN, S., VIG, J., AND RIEDL, J. 2009. Tagommenders: Connecting users to items through tags. In Pro-
ceedings of the 18th International Converence on Word Wide Web (WWW’09). ACM, New York, NY,
671–680.

SHNEIDERMAN, B. 1994. Dynamic queries for visual information seeking. IEEE Softw. 11, 70–77.
SIGURBJÖRNSSON, B. AND VAN ZWOL, R. 2008. Flickr tag recommendation based on collective knowledge.

In Proceeding of the 17th International Conference on the World Wide Web (WWW’08). ACM, New York,
NY, 327–336.

SMITH, D. C., IRBY, C., KIMBALL, R., BERPLANK, B., AND HARSLEM, E. 1990. Designing the Star user
interface. In Human-Computer Interaction, 237–259.

SMYTH, B., MCGINTY, L., REILLY, J., AND MCCARTHY, K. 2004. Compound critiques for conversational
recommender systems. In Proceedings of (Web Intelligence’04). IEEE Computer Society, Los Alamitos,
CA, 145–151.

SPARLING, E. I. AND SEN, S. 2011. Rating: How difficult is it? In Proceedings of the 2011 ACM Conference
on Recommender Systems (RecSys’11). ACM, New York, NY.

SYMEONIDIS, P., NANOPOULOS, A., AND MANOLOPOULOS, Y. 2008. Tag recommendations based on tensor
dimensionality reduction. In Proceedings of the ACM Conference on Recommender Systems (RecSys’08).
ACM, New York, NY, 43–50.

TEEVAN, J., DUMAIS, S., AND GUTT, Z. 2008. Challenges for supporting faceted search in large, heteroge-
neous corpora like the web. In Proceedings of the Second Workshop on Human-Computer Interaction
and Information Retrieval (HCIR’08).

TINTAREV, N. AND MASTHOFF, J. 2007. Effective explanations of recommendations: User-centered design.
In Proceedings of the ACM Conference on Recommender Systems (RecSys’07). ACM, New York, NY,
153–156.

TSO-SUTTER, K. H. L., MARINHO, L. B., AND SCHMIDT-THIEME, L. 2008. Tag-aware recommender sys-
tems by fusion of collaborative filtering algorithms. In Proceedings of the ACM Symposium on Applied
Computing (SAC’08). ACM, New York, NY, 1995–1999.

ULGES, A., SCHULZE, C., KEYSERS, D., AND BREUEL, T. M. 2008. A system that learns to tag videos
by watching YouTube. In Proceedings of the 6th International Conference on Computer Vision Systems
(ICVS’08). Springer-Verlag, Berlin, 415–424.

VIG, J., SEN, S., AND RIEDL, J. 2009. Tagsplanations: Explaining recommendations using tags. In Proceed-
ings of the 13th International Conference on Intelligent User Interfaces (IUI’09). ACM, New York, NY,
47–56.

VIG, J., SEN, S., AND RIEDL, J. 2011. Navigating the tag genome. In Proceedings of the 15th International
Conference on Intelligent User Interfaces (IUI’11). ACM, New York, NY.

WU, L., YANG, L., YU, N., AND HUA, X.-S. 2009. Learning to tag. In Proceedings of the 18th International
Conference on the World Wide Web (WWW’09). ACM, New York, NY, 361–370.

YEE, K.-P., SWEARINGEN, K., LI, K., AND HEARST, M. 2003. Faceted metadata for image search and
browsing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’03).
ACM, New York, NY, 401–408.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

13:44 J. Vig et al.

ZHAI, C. AND LAFFERTY, J. 2001. A study of smoothing methods for language models applied to ad hoc infor-
mation retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’01). ACM, New York, NY, 334–342.

ZHANG, J. AND PU, P. 2006. A comparative study of compound critique generation in conversational recom-
mender systems. In Proceedings of Adaptive Hypermedia’06. Springer, 234–243.

Received October 2011; revised March 2012; accepted April 2012

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 13, Publication date: September 2012.

