
Foundations and TrendsR© in
Human–Computer Interaction
Vol. 4, No. 2 (2010) 81–173
c© 2011 M. D. Ekstrand, J. T. Riedl and J. A. Konstan
DOI: 10.1561/1100000009

Collaborative Filtering Recommender Systems

By Michael D. Ekstrand, John T. Riedl
and Joseph A. Konstan

Contents

1 Introduction 82

1.1 History of Recommender Systems 84
1.2 Core Concepts, Vocabulary, and Notation 85
1.3 Overview 87

2 Collaborative Filtering Methods 88

2.1 Baseline Predictors 89
2.2 User–User Collaborative Filtering 91
2.3 Item–Item Collaborative Filtering 95
2.4 Dimensionality Reduction 101
2.5 Probabilistic Methods 107
2.6 Hybrid Recommenders 111
2.7 Selecting an Algorithm 112

3 Evaluating Recommender Systems 114

3.1 Data Sets 115
3.2 Offline Evaluation Structure 116
3.3 Prediction Accuracy 117
3.4 Accuracy Over Time 119

3.5 Ranking Accuracy 120
3.6 Decision Support Metrics 122
3.7 Online Evaluation 125

4 Building the Data Set 128

4.1 Sources of Preference Data 129
4.2 Rating Scales 132
4.3 Soliciting Ratings 134
4.4 Dealing with Noise 136

5 User Information Needs 138

5.1 User Tasks 139
5.2 Needs for Individual Items 140
5.3 Needs for Sets of Items 141
5.4 Systemic Needs 144
5.5 Summary 149

6 User Experience 150

6.1 Soliciting Ratings 150
6.2 Presenting Recommendations 151
6.3 Recommending in Conversation 153
6.4 Recommending in Social Context 154
6.5 Shaping User Experience with Recommendations 157

7 Conclusion and Resources 159

7.1 Resources 162

References 164

Foundations and TrendsR© in
Human–Computer Interaction
Vol. 4, No. 2 (2010) 81–173
c© 2011 M. D. Ekstrand, J. T. Riedl and J. A. Konstan
DOI: 10.1561/1100000009

Collaborative Filtering Recommender Systems

Michael D. Ekstrand1, John T. Riedl2

and Joseph A. Konstan3

University of Minnesota, 4-192 Keller Hall, 200 Union St., Minneapolis,
MN 55455, USA
1ekstrand@cs.umn.edu; 2riedl@cs.umn.edu; 3konstan@cs.umn.edu

Abstract

Recommender systems are an important part of the information and
e-commerce ecosystem. They represent a powerful method for enabling
users to filter through large information and product spaces. Nearly
two decades of research on collaborative filtering have led to a varied
set of algorithms and a rich collection of tools for evaluating their per-
formance. Research in the field is moving in the direction of a richer
understanding of how recommender technology may be embedded in
specific domains. The differing personalities exhibited by different rec-
ommender algorithms show that recommendation is not a one-size-
fits-all problem. Specific tasks, information needs, and item domains
represent unique problems for recommenders, and design and evalu-
ation of recommenders needs to be done based on the user tasks to
be supported. Effective deployments must begin with careful analysis
of prospective users and their goals. Based on this analysis, system
designers have a host of options for the choice of algorithm and for its
embedding in the surrounding user experience. This paper discusses
a wide variety of the choices available and their implications, aiming to
provide both practicioners and researchers with an introduction to the
important issues underlying recommenders and current best practices
for addressing these issues.

1
Introduction

Every day, we are inundated with choices and options. What to wear?
What movie to rent? What stock to buy? What blog post to read? The
sizes of these decision domains are frequently massive: Netflix has over
17,000 movies in its selection [15], and Amazon.com has over 410,000
titles in its Kindle store alone [7]. Supporting discovery in informa-
tion spaces of this magnitude is a significant challenge. Even simple
decisions — what movie should I see this weekend? — can be difficult
without prior direct knowledge of the candidates.

Historically, people have relied on recommendations and mentions
from their peers or the advice of experts to support decisions and dis-
cover new material. They discuss the week’s blockbuster over the water
cooler, they read reviews in the newspaper’s entertainment section, or
they ask a librarian to suggest a book. They may trust their local the-
ater manager or news stand to narrow down their choices, or turn on
the TV and watch whatever happens to be playing.

These methods of recommending new things have their limits, par-
ticularly for information discovery. There may be an independent film
or book that a person would enjoy, but no one in their circle of
acquaintances has heard of it yet. There may be a new indie band
in another city whose music will likely never cross the local critic’s

82

83

radar. Computer-based systems provide the opportunity to expand the
set of people from whom users can obtain recommendations. They also
enable us to mine users’ history and stated preferences for patterns that
neither they nor their acquaintances identify, potentially providing a
more finely-tuned selection experience.

There has been a good deal of research over the last 20 years on
how to automatically recommend things to people and a wide variety
of methods have been proposed [1, 140]. Recently, the Recommender
Systems Handbook [122] was published, providing in-depth discussions
of a variety of recommender methods and topics. This survey, however,
is focused primarily on collaborative filtering, a class of methods that
recommend items to users based on the preferences other users have
expressed for those items.

In addition to academic interest, recommendation systems are
seeing significant interest from industry. Amazon.com has been using
collaborative filtering for a decade to recommend products to their
customers, and Netflix valued improvements to the recommender tech-
nology underlying their movie rental service at $1M via the widely-
publicized Netflix Prize [15].

There is also a growing interest in problems surrounding
recommendation. Algorithms for understanding and predicting user
preferences do not exist in a vacuum — they are merely one piece of
a broader user experience. A recommender system must interact with
the user, both to learn the user’s preferences and provide recommenda-
tions; these concerns pose challenges for user interface and interaction
design. Systems must have accurate data from which to compute their
recommendations and preferences, leading to work on how to collect
reliable data and reduce the noise in user preference data sets. Users
also have many different goals and needs when they approach systems,
from basic needs for information to more complex desires for privacy
with regards to their preferences.

In his keynote address at the 2009 ACM Conference on Recom-
mender Systems, Martin [90] argued that the algorithms themselves
are only a small part of the problem of providing recommendations
to users. We have a number of algorithms that work fairly well, and
while there is room to refine them, there is much work to be done on

84 Introduction

user experience, data collection, and other problems which make up
the whole of the recommender experience.

1.1 History of Recommender Systems

The capacity of computers to provide recommendations was recognized
fairly early in the history of computing. Grundy [123], a computer-
based librarian, was an early step towards automatic recommender
systems. It was fairly primitive, grouping users into “stereotypes” based
on a short interview and using hard-coded information about various
sterotypes’ book preferences to generate recommendations, but it rep-
resents an important early entry in the recommender systems space.

In the early 1990s, collaborative filtering began to arise as a solution
for dealing with overload in online information spaces. Tapestry [49] was
a manual collaborative filtering system: it allowed the user to query for
items in an information domain, such as corporate e-mail, based on
other users’ opinions or actions (“give me all the messages forwarded
by John”). It required effort on the part of its users, but allowed them
to harness the reactions of previous readers of a piece of correspondence
to determine its relevance to them.

Automated collaborative filtering systems soon followed, automat-
ically locating relevant opinions and aggregating them to provide rec-
ommendations. GroupLens [119] used this technique to identify Usenet
articles which are likely to be interesting to a particular user. Users
only needed to provide ratings or perform other observable actions; the
system combined these with the ratings or actions of other users to
provide personalized results. With these systems, users do not obtain
any direct knowledge of other users’ opinions, nor do they need to
know what other users or items are in the system in order to receive
recommendations.

During this time, recommender systems and collaborative filter-
ing became an topic of increasing interest among human–computer
interaction, machine learning, and information retrieval researchers.
This interest produced a number of recommender systems for various
domains, such as Ringo [137] for music, the BellCore Video Recom-
mender [62] for movies, and Jester [50] for jokes. Outside of computer

1.2 Core Concepts, Vocabulary, and Notation 85

science, the marketing literature has analyzed recommendation for its
ability to increase sales and improve customer experience [10, 151].

In the late 1990s, commercial deployments of recommender technol-
ogy began to emerge. Perhaps the most widely-known application of
recommender system technologies is Amazon.com. Based on purchase
history, browsing history, and the item a user is currently viewing, they
recommend items for the user to consider purchasing.

Since Amazon’s adoption, recommender technology, often based on
collaborative filtering, has been integrated into many e-commerce and
online systems. A significant motivation for doing this is to increase
sales volume — customers may purchase an item if it is suggested to
them but might not seek it out otherwise. Several companies, such as
NetPerceptions and Strands, have been built around providing recom-
mendation technology and services to online retailers.

The toolbox of recommender techniques has also grown beyond
collaborative filtering to include content-based approaches based on
information retrieval, bayesian inference, and case-based reasoning
methods [132, 139]. These methods consider the actual content or
attributes of the items to be recommended instead of or in addition
to user rating patterns. Hybrid recommender systems [24] have also
emerged as various recommender strategies have matured, combining
multiple algorithms into composite systems that ideally build on the
strengths of their component algorithms. Collaborative filtering, how-
ever, has remained an effective approach, both alone and hybridized
with content-based approaches.

Research on recommender algorithms garnered significant attention
in 2006 when Netflix launched the Netflix Prize to improve the state of
movie recommendation. The objective of this competition was to build
a recommender algorithm that could beat their internal CineMatch
algorithm in offline tests by 10%. It sparked a flurry of activity, both
in academia and amongst hobbyists. The $1 M prize demonstrates the
value that vendors place on accurate recommendations.

1.2 Core Concepts, Vocabulary, and Notation

Collaborative filtering techniques depend on several concepts to
describe the problem domain and the particular requirements placed

86 Introduction

on the system. Many of these concepts are also shared by other recom-
mendation methods.

The information domain for a collaborative filtering system consists
of users which have expressed preferences for various items. A prefer-
ence expressed by a user for an item is called a rating and is frequently
represented as a (User, Item, Rating) triple. These ratings can take
many forms, depending on the system in question. Some systems use
real- or integer-valued rating scales such as 0–5 stars, while others use
binary or ternary (like/dislike) scales.1 Unary ratings, such as “has pur-
chased”, are particularly common in e-commerce deployments as they
express well the user’s purchasing history absent ratings data. When
discussing unary ratings, we will use “purchased” to mean that an item
is in the user’s history, even for non-commerce settings such as web page
views.

The set of all rating triples forms a sparse matrix referred to as
the ratings matrix. (User, Item) pairs where the user has not expressed
a preference for (rated) the item are unknown values in this matrix.
Figure 1.1 shows an example ratings matrix for three users and four
movies in a movie recommender system; cells marked ‘?’ indicate
unknown values (the user has not rated that movie).

In describing use and evaluation of recommender systems, including
collaborative filtering systems, we typically focus on two tasks. The
first is the predict task: given a user and an item, what is the user’s
likely preference for the item? If the ratings matrix is viewed as a
sampling of values from a complete user–item preference matrix, than
the predict task for a recommender is equivalent to the matrix missing-
values problem.

Alice in
Batman Begins Wonderland Dumb and Dumber Equilibrium

User A 4 ? 3 5
User B ? 5 4 ?
User C 5 4 2 ?

Fig. 1.1 Sample ratings matrix (on a 5-star scale).

1 The scale is ternary if “seen but no expressed preference” is considered distinct from
“unseen”.

1.3 Overview 87

The second task is the recommend task: given a user, produce the
best ranked list of n items for the user’s need. An n-item recommen-
dation list is not guaranteed to contain the n items with the highest
predicted preferences, as predicted preference may not be the only cri-
teria used to produce the recommendation list.

In this survey, we use a consistent mathematical notation for
referencing various elements of the recommender system model. The
universe consists of a set U of users and a set I of items. Iu is the set
of items rated or purchased by user u, and Ui is the set of users who
have rated or purchased i. The rating matrix is denoted by R, with ru,i

being the rating user u provided for item i, ru being the vector of all
ratings provided by user u, and ri being the vector of all ratings pro-
vided for item i (the distinction will be apparent from context). r̄u and
r̄i are the average of a user u or an item i’s ratings, respectively. A
user u’s preference for an item i, of which the rating is assumed to be
a reflection, is πu,i (elements of the user-item preference matrix Π). It
is assumed that ru,i ≈ πu,i; specifically, R is expected to be a sparse
sample of Π with the possible addition of noise. The recommender’s
prediction of πu,i is denoted by pu,i.

1.3 Overview

This survey aims to provide a broad overview of the current state of
collaborative filtering research. In the next two sections, we discuss
the core algorithms for collaborative filtering and traditional means of
measuring their performance against user rating data sets. We will then
move on to discuss building reliable, accurate data sets; understanding
recommender systems in the broader context of user information needs
and task support; and the interaction between users and recommender
systems.

2
Collaborative Filtering Methods

Collaborative filtering (CF) is a popular recommendation algorithm
that bases its predictions and recommendations on the ratings or behav-
ior of other users in the system. The fundamental assumption behind
this method is that other users’ opinions can be selected and aggregated
in such a way as to provide a reasonable prediction of the active user’s
preference. Intuitively, they assume that, if users agree about the qual-
ity or relevance of some items, then they will likely agree about other
items — if a group of users likes the same things as Mary, then Mary
is likely to like the things they like which she hasn’t yet seen.

There are other methods for performing recommendation, such as
finding items similar to the items liked by a user using textual similarity
in metadata (content-based filtering or CBF). The focus of this survey
is on collaborative filtering methods, although content-based filtering
will enter our discussion at times when it is relevant to overcoming a
particular recommender system difficulty.

The majority of collaborative filtering algorithms in service today,
including all algorithms detailed in this section, operate by first gen-
erating predictions of the user’s preference and then produce their
recommendations by ranking candidate items by predicted preferences.
Often this prediction is in the same scale as the ratings provided by

88

2.1 Baseline Predictors 89

users, but occasionally the prediction is on a different scale and is mean-
ingful only for candidate ranking. This strategy is analagous to the
common information retrieval method of producing relevance scores
for each document in a corpus with respect to a particular query and
presenting the top-scored items. Indeed, the recommend task can be
viewed as an information retrieval problem in which the domain of
items (the corpus) is queried with the user’s preference profile.

Therefore, this section is primarily concerned with how various
algorithms predict user preference. In later sections we will discuss
recommendation strategies that diverge from this structure, but in
actual implementation they frequently start with a preference-ranked
list of items and adjust the final recommendation list based on
additional criteria.

2.1 Baseline Predictors

Before discussing true collaborative filtering altorighms, let us first
consider some baseline prediction methods. These methods are useful
for establishing non-personalized baselines against which personalized
algorithms can be compared, as well as for pre-processing and normal-
izing data for use with more sophisticated algorithms. Baseline algo-
rithms that do not depend on the user’s ratings can also be useful for
providing predictions for new users. We denote the baseline prediction
for user u and item i by bu,i.

The simplest baseline is to predict the average rating over all ratings
in the system: bu,i = µ (where µ is the overall average rating). This can
be enhanced somewhat by predicting the average rating by that user
or for that item: bu,i = r̄u or bu,i = r̄i.

Baselines can be further enhanced by combining the user mean
with the average deviation from user mean rating for a particular item
[58, 79, 110, 115]. Generally, a baseline predictor of the following form
can be used:

bu,i = µ + bu + bi (2.1)

bu and bi are user and item baseline predictors, respectively. They
can be defined simply by using average offsets as follows, computing

90 Collaborative Filtering Methods

subsequent effects within the residuals of previous effects [14, 58, 115]:

bu =
1

|Iu|
∑
i∈Iu

(ru,i − µ) (2.2)

bi =
1

|Ui|
∑
u∈Ui

(ru,i − bu − µ) (2.3)

The baseline can be further regularized, providing a more reasonable
estimate of user and item preferences in the face of sparse sampling,
with the incorporation of damping terms βu and βi [44]1:

bu =
1

|Iu| + βu

∑
i∈Iu

(ru,i − µ) (2.4)

bi =
1

|Ui| + βi

∑
u∈Ui

(ru,i − bu − µ) (2.5)

This adjustment causes the baseline predicted ratings to be closer
to global mean when the user or item has few ratings, based on the
statistical principle that the more ratings a user has given or an item
has received, the more is known about that user or item’s true mean
rating. Funk [44] found that 25 was a useful value for the damping
terms.

Additional baselines can be computed and added, and the baselines
can be made more sophisticated to deal with various effects [14, 80, 115].
If an item or user is new and therefore has no ratings, its baseline can
be set to 0, effectively assuming that it is an average user or item.

The baseline predictors are not restricted to simple ANOVA-style
functions. They can also be learned as more general parameters with
gradient descent or other parameter estimation techniques, potentially
as a part of learning a larger model [14, 79, 80].

Baseline predictors effectively capture effects of user bias, item pop-
ularity, and can be applied to more exotic but increasingly-important
factors such as time [80, 115]. If the baseline is subtracted from the
ratings matrix to yield a normalized ratings matrix R̂, all that remains

1 Funk’s formulation involved an additional term in the numerator; since we are computing
mean offsets rather than means, that term cancels out.

2.2 User–User Collaborative Filtering 91

for collaborative filtering to do is to efficiently capture the interaction
effect between users and items. Further, the missing values of R̂ are 0
rather than unknown, simplifying some computations and allowing the
matrix to be handled by standard sparse matrix packages.

2.2 User–User Collaborative Filtering

User–user collaborative filtering, also known as k-NN collaborative fil-
tering, was the first of the automated CF methods. It was first intro-
duced in the GroupLens Usenet article recommender [119]. The Ringo
music recommender [137] and the BellCore video recommender [62] also
used user-user CF or variants thereof.

User–user CF is a straightforward algorithmic interpretation of the
core premise of collaborative filtering: find other users whose past rating
behavior is similar to that of the current user and use their ratings
on other items to predict what the current user will like. To predict
Mary’s preference for an item she has not rated, user–user CF looks
for other users who have high agreement with Mary on the items they
have both rated. These users’ ratings for the item in question are then
weighted by their level of agreement with Mary’s ratings to predict
Mary’s preference.

Besides the rating matrix R, a user–user CF system requires a simi-
larity function s:U×U → R computing the similarity between two users
and a method for using similarities and ratings to generate predictions.

2.2.1 Computing Predictions

To generate predictions or recommendations for a user u, user–user
CF first uses s to compute a neighborhood N ⊆ U of neighbors of u.
Once N has been computed, the system combines the ratings of users
in N to generate predictions for user u’s preference for an item i. This
is typically done by computing the weighted average of the neighboring
users’ ratings i using similarity as the weights:

pu,i = r̄u +
∑

u′∈N s(u,u′)(ru′,i − r̄u′)∑
u′∈N |s(u,u′)| (2.6)

92 Collaborative Filtering Methods

Subtracting the user’s mean rating r̄u compensates for differences
in users’ use of the rating scale (some users will tend to give higher
ratings than others). Equation (2.6) can also be extended to normalize
user ratings to z-scores by dividing the offset from mean rating by the
standard deviation σu of each user’s ratings, thereby compensating for
users differing in rating spread as well as mean rating [58]:

pu,i = r̄u + σu

∑
u′∈N s(u,u′)(ru′,i − r̄u′)/σu′∑

u′∈N |s(u,u′)| (2.7)

Weighted averaging is not the only mechanism that has been used
for computing predictions, but it is the most common. Ringo used no
weighting, performing an unweighted average over ratings by neighbor-
ing users [137]. The BellCore system used a multivariate regression over
the users in the neighborhood to generate predictions [62]. Weighted
averaging is by far the most common, however, as it is simple and works
well in practice. It is also consistent with Social Choice theory [111],
grounding it in models of human behavior and an axiomatic, first-
principles development of collaborative filtering. Social choice theory
deals with the preferences of individuals and of a society as a whole.
Given several properties that a recommender should exhibit within the
social choice framework, Pennock et al. show that weighted averaging
is the only aggregation method which produces consistent results.

There remains the question of how many neighbors to select. In some
systems, such as the original GroupLens, N = U\{u} (all users are
considered as neighbors); in other systems, neighborhoods are selected
for each item based on a similarity threshold or neighborhood size such
that Ni is the k users most similar to u who have rated the target item i.
Limiting neighborhood size can result in more accurate predictions, as
the neighbors with low correlation introduce more noise than signal
into the process [58]. The particular threshold to use is domain- and
system-specific, so analysis of a relevant data set is needed to choose
the neighborhood size for a particular deployment. In offline analysis
of available movie ratings data, Herlocker et al. found k = 20 to be a
good value; values in the 20–50 range are a reasonable starting point
in many domains. Lathia et al. [86] propose dynamically adapting the
neighborhood size used for each user to minimize the error in their

2.2 User–User Collaborative Filtering 93

predictions as new data is added to the system. Randomly sampling
candidate users for the neighborhood can decrease the time required to
find neighbors, at the possible expense of accuracy [62].

2.2.2 Computing User Similarity

A critical design decision in implementing user–user CF is the choice
of similarity function. Several different similarity functions have been
proposed and evaluated in the literature.

Pearson correlation. This method computes the statistical correla-
tion (Pearson’s r) between two user’s common ratings to deter-
mine their similarity. GroupLens and BellCore both used this
method [62, 119]. The correlation is computed by the following:

s(u,v) =

∑
i∈Iu∩Iv

(ru,i − r̄u)(rv,i − r̄v)√∑
i∈Iu∩Iv

(ru,i − r̄u)2
√∑

i∈Iu∩Iv
(rv,i − r̄v)2

Pearson correlation suffers from computing high similarity
between users with few ratings in common. This can be alle-
viated by setting a threshold on the number of co-rated items
necessary for full agreement (correlation of 1) and scaling the
similarity when the number of co-rated items falls below this
threshold [58, 59]. Experiments have shown a threshold value
of 50 to be useful in improving prediction accuracy, and the
threshold can be applied by multiplying the similarity function
by min{|Iu∩Iv|/50,1}.

Constrained Pearson correlation. Ringo solicited ratings from its
users on a 7-point scale, providing a rating guide that fixed 4
as a neutral (neither like nor dislike) value rz. With an abso-
lute reference, it is possible to correlate absolute like/dislike
rather than relative deviation (as the standard Pearson r does).
This led Shardanand and Maes [137] to propose the constrained
Pearson correlation:

s(u,v) =

∑
i∈Iu∩Iv

(ru,i − rz)(rv,i − rz)√∑
i∈Iu∩Iv

(ru,i − rz)2
√∑

i∈Iu∩Iv
(rv,i − rz)2

94 Collaborative Filtering Methods

Spearman rank correlation. The Spearman rank correlation coeffi-
cient is another candidate for a similarity function [58]. For the
Spearman correlation, the items a user has rated are ranked
such that their highest-rated item is at rank 1 and lower-
rated items have higher ranks. Items with the same rating are
assigned the average rank for their position. The computation
is then the same as that of the Pearson correlation, except that
ranks are used in place of ratings.

Cosine similarity. This model is somewhat different than the pre-
viously described approaches, as it is a vector-space approach
based on linear algebra rather than a statistical approach. Users
are represented as |I|-dimensional vectors and similarity is mea-
sured by the cosine distance between two rating vectors. This
can be computed efficiently by taking their dot product and
dividing it by the product of their L2 (Euclidean) norms:

s(u,v) =
ru · rv

‖ru‖2‖rv‖2
=

∑
i ru,irv,i√∑

i r
2
u,i

√∑
i r

2
v,i

Unknown ratings are considered to be 0; this causes them to
effectively drop out of the numerator. If the user mean baseline
is subtracted from the ratings prior to computing the similarity,
cosine similarity is equivalent to Pearson correlation when the
users have rated the same set of items and decreases as |Iu∩Iv |2

|Iu||Iv |
decreases.

The threshold-based damping described for Pearson correlation can,
in principle, be applied to any similarity function, although the benefits
of doing so have not been studied. An alternative method for damping is
to add a large constant, such as 100, to the denominator; this attenuates
the similarity of users with small sets of co-rated items.

Other similarity functions, such as mean-squared difference [137],
have been proposed, but have not seen significant adoption. In general,
Pearson correlation has been found to provide the best results [22, 58],
although results from the Ringo system suggest that constrained
Pearson correlation may provide some improvement when items are
rated on an absolute scale [137].

2.3 Item–Item Collaborative Filtering 95

Alice in
Batman Begins Wonderland Dumb and Dumber Equilibrium

User A 4 ? 3 5
User B ? 5 4 ?
User C 5 4 2 ?
User D 2 4 ? 3
User E 3 4 5 ?

Fig. 2.1 Example ratings matrix (on a 5-star scale).

2.2.3 Example

Consider the ratings matrix in Figure 2.1 (an extension of the sample
matrix in Figure 1.1). We want to find User C’s prediction for Equilib-
rium (pC,e) with the following configuration:

• Pearson correlation.
• Neighborhood size of 2.
• Weighted average with mean offset (Equation (2.6)).

C’s mean rating is 3.667. There are only two users who have rated
Equilibrium, and therefore only two candidate users for the neighbor-
hood: A and D. s(C,A) = 0.832 and s(C,D) = −0.515. The prediction
pC,e is therefore computed as follows:

pC,e = r̄C +
s(C,A)(rA,e − r̄A) + s(C,D)(rD,e − r̄D)

|s(C,A)| + |s(C,D)|
= 3.667 +

0.832 · (5 − 4) + −0.515 · (2 − 3)
0.832 + 0.515

= 4.667

2.3 Item–Item Collaborative Filtering

User–user collaborative filtering, while effective, suffers from scalabil-
ity problems as the user base grows. Searching for the neighbors of
a user is an O(|U |) operation (or worse, depending on how similar-
ities are computing — directly computing most similarity functions
against all other users is linear in the total number of ratings). To
extend collaborative filtering to large user bases and facilitate deploy-
ment on e-commerce sites, it was necessary to develop more scalable

96 Collaborative Filtering Methods

algorithms. Item–item collaborative filtering, also called item-based col-
laborative filtering, takes a major step in this direction and is one of
the most widely deployed collaborative filtering techniques today.

Item–item collaborative filtering was first described in the literature
by Sarwar et al. [130] and Karypis [71], although a version of it seems
to have been used by Amazon.com at this time [87]. Rather than using
similarities between users’ rating behavior to predict preferences, item–
item CF uses similarities between the rating patterns of items. If two
items tend to have the same users like and dislike them, then they are
similar and users are expected to have similar preferences for similar
items. In its overall structure, therefore, this method is similar to earlier
content-based approaches to recommendation and personalization, but
item similarity is deduced from user preference patterns rather than
extracted from item data.

In its raw form, item–item CF does not fix anything: it is still neces-
sary to find the most similar items (again solving the k-NN problem) to
generate predictions and recommendations. In a system that has more
users than items, it allows the neighborhood-finding to be amongst the
smaller of the two dimensions, but this is a small gain. It provides
major performance gains by lending itself well to pre-computing the
similarity matrix.

As a user rates and re-rates items, their rating vector will change
along with their similarity to other users. Finding similar users in
advance is therefore complicated: a user’s neighborhood is determined
not only by their ratings but also by the ratings of other users, so their
neighborhood can change as a result of new ratings supplied by any
user in the system. For this reason, most user–user CF systems find
neighborhoods at the time when predictions or recommendations are
needed.

In systems with a sufficiently high user to item ratio, however, one
user adding or changing ratings is unlikely to significantly change the
similarity between two items, particularly when the items have many
ratings. Therefore, it is reasonable to pre-compute similarities between
items in an item–item similarity matrix. The rows of this matrix can
even be truncated to only store the k most similar items. As users
change ratings, this data will become slightly stale, but the users will

2.3 Item–Item Collaborative Filtering 97

likely still receive good recommendations and the data can be fully
updated by re-computing the similarities during a low-load time for
the system.

Item–item CF generates predictions by using the user’s own ratings
for other items combined with those items’ similarities to the target
item, rather than other users’ ratings and user similarities as in user–
user CF. Similar to user–user CF, the recommender system needs a
similarity function, this time s:I×I → R, and a method to generate
predictions from ratings and similarities.

2.3.1 Computing Predictions

In real-valued ratings domains, the similarity scores can be used to
generate predictions using a weighted average, similar to the procedure
used in user–user CF. Recommendations are then generated by picking
the candidate items with the highest predictions.

After collecting a set S of items similar to i, pu,i can be predicted
as follows [130]:

pu,i =

∑
j∈S s(i, j)ru,j∑
j∈S |s(i, j)| (2.8)

S is typically selected to be the k items most similar to j that u has also
rated for some neighborhood size k. Sarwar et al. [130] found k = 30
produced good results on the MovieLens data set.

Equation (2.8) as it stands suffers from two deficiencies. The first
comes to light when it is possible for similarity scores to be negative and
ratings are constrained to be nonnegative: some of the ratings averaged
together to compute the prediction may be negative after weightings.
While this will not affect the relative ordering of items by predicted
value, it will bias the predicted values so they no longer map back to
the user rating domain. This can be corrected either by thresholding
similarities so only items with nonnegative similarities are considered
or by averaging distance from the baseline predictor:

pu,i =

∑
j∈S s(i, j)(ru,j − bu,i)∑

j∈S |s(i, j)| + bu,i (2.9)

98 Collaborative Filtering Methods

The other difficulty is with non-real-valued ratings scales, partic-
ularly the unary scales common on e-commerce sites without ratings
data. In this case, the averaging does not work: if all similarities are
positive and ru,i = 1 if user u has purchased item i, then Equation (2.8)
always evaluates to 1. With negative similarities, it is similarly ill-
behaved. To work around this, we can compute pseudo-predictions p̃u,i

with a simple aggregation of the similarities to items in the user’s pur-
chase history Iu. Summation has been tested and shown to perform
well (Equation (2.10)); other aggregations such as mean or max may
also be considered or used in practice.

p̃u,i =
∑
j∈Iu

s(i, j) (2.10)

p̃u,i is not in a meaningful scale to predict any particular user behavior,
but the predict task is typically not as important in unary contexts.
This pseudo-prediction can, however, be used to rank candidate items
for recommendation, forming a good basis for using item–item CF to
recommend items based on user purchase histories [38, 71, 87].

It is also possible to use weights other than the similarity function
for computing the final prediction. Bell and Koren [14] proposed a
formulation that computes item weights directly by estimating, for each
user–item pair u,i, the solution to the linear equation Aw = b. The
solution w is such that wj is the optimal weight to use for u’s rating
of j in computing their rating of i, and A and b are given as follows:

aj,k =
∑
v �=u

πv,jπv,k (2.11)

bj =
∑
v �=u

πv,jπv,i (2.12)

The computed weights, differing for each user–item pair, are then
used to compute the prediction pu,i =

∑
j∈S wjru,j .

2.3.2 Computing Item Similarity

The item–item prediction process requires an item–item similarity
matrix S. This matrix is a standard sparse matrix, with missing values

2.3 Item–Item Collaborative Filtering 99

being 0 (no similarity); it differs in this respect from R, where missing
values are unknown.

As in user–user collaborative filtering, there are a variety of methods
that can be used for computing item similarities.

Cosine similarity. Cosine similarity between item rating vectors is
the most popular similarity metric, as it is simple, fast, and
produces good predictive accuracy.

s(i, j) =
ri · rj

‖ri‖2‖rj‖2

Conditional probability. For domains with unary ratings (such as
shopping site purchase histories), Karypis [71] proposed a sim-
ilarity function based on conditional probabilities: s(i, j) =
PrB[j ∈ B|i ∈ B] where B is a user’s purchase history. With
a scaling parameter α to balance for frequently occuring items,
this formula becomes

s(i, j) =
Freq(i∧j)

Freq(i)(Freq(j))α

α serves as a damping factor to compensate for PrB[j ∈ B|
i ∈ B] being high solely due to a high marginal probability
PrB[j ∈ B] (if j is an item that many people purchase, it will
be similar to most items; α reduces this effect to bring items
that are more uniquely similar to the top). This normalization
hinders the ability to generate true predictions, but this is not a
problem in unary domains due to the use of pseudo-predictions.

Notably, this function is not symmetric (s(i1, i2) may not be
the same as s(i2, i1)). Care must be taken that it is used in the
correct orientation.

Pearson correlation. Pearson correlation has also been proposed for
item–item recommendation, but does not seem to work as well
as cosine similarity [130].

In order to optimize the recommender’s performance, it is impor-
tant to normalize the ratings prior to computing the similarity matrix
[14, 130]. In real-valued domains variation in ratings due to user ratings

100 Collaborative Filtering Methods

bias (e.g., two users liking and disliking similar films, but one being a
cynic who rates average films 2.5/5 and the other an enthusiast who
rates the average film at 4/5) and item bias allows the collaborative
filter to focus on the more nuanced differences in user preference for
particular items. This can be accomplished by subtracting a baseline
predictor from all ratings prior to computing similarities (e.g., compute
similarities over ratings r̂u,i = ru,i − µ − bu − bi).

When applying cosine similarity in unary ratings domains, it can
be useful to normalize each user’s ratings vector ru to the unit vector
prior to computing item similarities. The effect of this adjustment is
that users who have purchased fewer items have more impact on the
similarity of the items they have purchased than users who have pur-
chased many items [38, 71].

Similarly, normalizing item similarity vectors (rows of S) to unit
vectors can be beneficial. This causes items with sparser neighborhoods
(fewer similar items) to have more influence in computing the final
predictions [38, 71].

2.3.3 Pre-computing and Truncating the Model

Due to the relatively static nature of item similarities when |U | � |I|
(particularly when there are more ratings-per-item than ratings-per-
user), it is feasible to pre-compute item–item similarities and cache
the k′ most similar items to each item. Prediction can then be per-
formed quickly by looking up the similarity list for each item rated
by the current user and aggregating their similarities into a predicted
preference. Caching more items than are used in the similarity compu-
tation (so k′ > k) is useful to increase the likelihood of having k similar
items after items already rated by the user have been removed from
the candidate set.

Pre-computation and truncation is essential to deploying collabo-
rative filtering in practice, as it places an upper bound on the number
of items which must be considered to produce a recommendation and
eliminates the query-time cost of similarity computation. It comes with
the small expense of reducing the number of items for which predic-
tions can be generated (the coverage of the recommender), but the

2.4 Dimensionality Reduction 101

unrecommendable items will usually have low predicted preferences
anyway.

2.3.4 Example

Again using the example ratings in Figure 2.1, let us now compute C’s
prediction for Equilibrium using item–item CF with cosine similarity.
We compute the length (L2 norm) of each movie’s vector, its norm with
the vector re for Equilibrium, and finally the cosine similarity:

Movie ‖r‖2 r · re
r·re

‖r‖2‖re‖2

Batman Begins (b) 7.348 24 0.607
Alice in Wonderland (a) 8.544 8 0.174
Dumb and Dumber (d) 7.348 15 0.382
Equilibrium (e) 5.385

User C has rated all three other movies, but we will only use the
most similar two when computing the prediction:

pC,e =
s(b,e) · rC,b + s(d,e) · rC,d

|s(b,e)| + |s(d,e)|

=
0.607 ∗ 5 + 0.382 ∗ 2

0.607 + 0.382
= 3.84

2.4 Dimensionality Reduction

In both of the traditional collaborative filtering algorithms so far
described, there are hints of viewing the user–item ratings domain as a
vector space. With this view, however, the vectors are of extremely high
dimension: an item is a |U |-dimensional vector with missing values of
users’ preferences for it (similarly, a user is a |I|-dimensional vector).
Further, there is redundancy in these dimensions, as both users and
items will usually be divisible into groups with similar preference pro-
files (e.g., many science fiction movies will be liked to similar degrees
by the same set of users). It is therefore natural to ask whether the
dimensionality of the rating space can be reduced — can we find a
smaller number of dimensions, ideally a constant number k, so that
items and users can be represented by k-dimensional vectors?

102 Collaborative Filtering Methods

In particular, we want to identify a set of k topics so that user
preferences for items can be expressed as a combination of the user’s
interest in a topic (topic interest) and the extent to which each item is
relevant to the topic (topic relevance). Some recommendation methods
do this explicitly using content features, tags attached to the items, or
user clustering or stereotyping. Latent semantic analysis, a technique
pioneered in information retrieval, provides a way to do this decompo-
sition using only the rating data. The topics are considered to be latent
in the rating data.

In information retrieval, a document corpus can be represented
as a term-document matrix where each cell is the number of times
the given term occurs in a particular document. This results in high-
dimensional representations of terms and documents, further compli-
cated by the problems of synonymy (different terms having the same
or similar meaning), polysemy (the same term having different mean-
ings), and noise (documents or queries using terms incorrectly). Latent
semantic analysis (LSA, also called latent semantic indexing or LSI)
deals with these problems by using dimensionality reduction, in the
form of truncated singular value decomposition (SVD), to extract the
semantic relationships between documents latent in their use of vocab-
ulary [16, 36]. SVD-based dimensionality reduction has since been
adapted to collaborative filtering by Billsus and Pazzani [18], Sarwar
et al. [128, 131], and many others.

2.4.1 Defining Singular Value Decomposition

For a matrix M, its SVD is the factorization of M into three con-
stituent matrices such that M = UΣTT, Σ is a diagonal matrix whose
values σi are the singular values of the decomposition, and both U and
T are orthogonal. What this accomplishes is introducing an interme-
diate vector space represented by Σ. If M is the ratings matrix, ΣTT

transforms vectors from item-space into the intermediate vector space.
In the pure form of the SVD, U is m × k̂, Σ is k × k̂, and V is

n × k̂, where M is m × n and has rank k̂; this is not a significant gain.
Σ can, however, be truncated by only retaining the k largest singular
values to yield Σk. The resulting decomposition is an approximation

2.4 Dimensionality Reduction 103

of M . Further, using the Frobenius norm as the measure of error, it is
the best possible rank-k approximation [36].

This truncation simultaneously achieves two goals. First, it
decreases the dimensionality of the vector space, decreasing the stor-
age and computational requirements for the model. Items and users
can each be represented by k-dimensional vectors. Second, by drop-
ping the smaller singular values, small perturbances as a result of noise
in the data are eliminated, leaving only the strongest effects or trends
in the model. In collaborative filtering, this noise can come as a result of
other factors besides sheer preference playing a role in a user’s rating;
decreasing the impact of noise improves our ability to provide high-
quality recommendations.

Computing the SVD of the ratings matrix results in the following
factorization, with m = |U |, n = |I|, and Σ a k×k diagonal matrix (also
shown in Figure 2.2):

R ≈ UΣTT (2.13)

Once the rank-k SVD of Equation (2.13) has been computed, it can
be interpreted as an expression of the topic preference-relevance model.
The rows of the |U | × k matrix U are the users’ interest in each of the k

inferred topics, and the rows of I are the item’s relevance for each topic.
The singular values in Σ are weights for the preferences, representing
the influence of a particular topic on user–item preferences across the
system. A user’s preference for an item, therefore, is the weighted sum
of the user’s interest in each of the topics times that item’s relevance
to the topic.

Fig. 2.2 Singular value decomposition of the ratings matrix.

104 Collaborative Filtering Methods

2.4.2 Computing and Updating the SVD

In order to use SVD (or any matrix factorization method), it is nec-
essary to first compute the matrix factorization. There are a variety
of algorithms for computing singular value decompositions, including
Lanczos’ algorithm, the generalized Hebbian algorithm, and expecta-
tion maximization [51, 81, 127].

Singular value decomposition is only well-defined when the matrix
is complete. Therefore, to factor the ratings matrix, the missing values
must be filled with some reasonable default (a method called impu-
tation). Sarwar et al. [131] found the item’s average rating to be a
useful default value (they tried user average as well, but item average
performed better). Alternatively, the SVD can be computed over the
normalized ratings matrix R̂ (see Section 2.1) and the missing values
considered to be 0.

Several methods have been proposed that compute an estimate
of the SVD only on the known ratings, dropping the requirement to
impute or otherwise account for missing ratings. Kurucz et al. [81]
propose a least-squares method that learns a regression for each user.
Another method that has become quite popular in the last few years
is gradient descent [44, 110]. This method trains each topic f in turn,
using the following update rules (λ is the learning rate, typically 0.001):

∆uj,f = λ(ru,i − pu,i)ik,f (2.14)

∆ik,f = λ(ru,i − pu,i)uj,f (2.15)

The gradient descent method for estimating the SVD also allows for
regularization to prevent overfitting the resulting model. The resulting
model will not be a true SVD of the rating matrix, as the component
matrices are no longer orthogonal, but tends to be more accurate at
predicting unseen preferences than the unregularized SVD. The regu-
larization is accomplished by adding an additional term to the update
rules in Equations (2.14) and (2.15) [44]. γ is the regularization factor,
typically 0.1–0.2.

∆uj,f = λ((ru,i − pu,i)ik,f − γuj,f) (2.16)

∆ik,f = λ((ru,i − pu,i)uj,f − γik,f) (2.17)

2.4 Dimensionality Reduction 105

Prior to computing the SVD, the ratings can additionally be normal-
ized, e.g., by subtracting the user’s mean rating or some other baseline
predictor. This can improve both accuracy [131] and accelerate conver-
gence of iterative methods [44].

Once the SVD is computed, it is necessary to update it to reflect
new users, items, and ratings. A commonly used method for updating
the SVD is folding-in; it works well in practice and allows users who
were not considered when the ratings matrix was factored to receive
recommendations and predictions [16, 129]. Folding-in operates by com-
puting a new user-preference or topic-relevance vector for the new user
or item but not recomputing the decomposition itself.

For a user u, folding-in computes their topic interest vector u such
that πu ≈ uΣTT. Given their rating vector ru, u can therefore be cal-
culated as u = (ΣTT)−1ru = TΣ−1ru. Setting unknown ratings to 0
causes the folding-in process to ignore them, and a new user prefer-
ence vector is now available. The same process works for item vectors,
except U is substituted for T.

As user and item vectors are updated with the folding-in process, the
accuracy of the SVD will diminish over time. It is therefore necessary
to periodically re-compute the complete factorization. In a deployed
system, this can be done off-line during low-load times [129].

Brand [21] proposed an alternative method for building and main-
taining the SVD based on rank-1 updates. His method produces fast,
real-time updates of the SVD, bootstrapping the SVD with a dense
portion of the data set. This dense portion can be extracted by sorting
users and items to make a dense corner in the ratings matrix.

2.4.3 Generating Predictions

The predicted preference of user u for item i can be computed as the
weighted dot product of the user-topic interest vector u and the item-
topic relevance vector i:

pu,i =
∑

f

ufσf if (2.18)

Recommendation can be done by ranking items in order of predicted
preference. The user’s preference pu for all items can be computed

106 Collaborative Filtering Methods

efficiently by multiplying their topic-interest vector with the scaled item
matrix ΣTT:

pu = uΣTT (2.19)

Recommendations and predictions for users who were not consid-
ered in the factorization can be computed by applying the folding-in
process to compute a user preference vector given a rating vector.

2.4.4 Computing Similarities

Singular value decomposition can be used to generate user and item
neighborhoods as well as predictions. User–user similarity can be com-
puted using a vector similarity metric between the two users’ topic
interest vectors (rows in U). Since U is orthogonal, a dot product
between two rows suffices to compute their cosine similarity. Item sim-
ilarities can be found similarly by operating on rows of T [36, 131].

These similarities can be used to compute neighborhoods which in
turn produce recommendations [50, 128, 131]. Using neighborhoods to
generate recommendations can be particularly useful in e-commerce
domains with unary rating sets, as recommendations can be computed
by summing the similarities of items to each of the items in the user’s
shopping cart.

2.4.5 Normalization in SVD

As with item–item CF, it is beneficial to normalize ratings by subtract-
ing baseline predictors prior to computing the model [44, 110]. When
doing this, however, it is necessary to also use the baseline when com-
puting predictions. In item–item CF, since the similarity computations
are only used as weights applied to averaging the user’s other ratings,
normalization in the prediction step is less important; with matrix fac-
torization, the normalization is encoded into the decomposed matrix
and therefore must be reversed at the prediction stage. If the baseline
predictor bu,i has been subtracted from ratings prior to model compu-
tation, the prediction rule then becomes

pu,i = bu,i +
∑

f

ufσf if

2.5 Probabilistic Methods 107

The baseline predictor can be incorporated into the model learning
process when using a gradient descent method, thus allowing for the
recommender to learn user and item biases that may differ somewhat
from plain means [79, 110].

2.4.6 Principle Component Analysis

Singular value decomposition is not the only matrix factorization
method used for collaborative filtering. The Eigentaste algorithm used
in Jester uses principle component analysis (PCA) on the dense matrix
of user ratings for the “gauge set” of jokes rated by all users [50]. Eigen-
taste normalizes the subset of R consisting of the ratings of gauge
set jokes by the mean and standard deviation of the ratings of each
joke, resulting in a normalized ratings matrix R̂ (r̂u,i = (ru,i − µi)/σi,
where µi is the mean rating for item i and σi the standard devi-
ation of ratings of i). PCA then computes the correlation matrix
C = 1

|U |−1R̂
TR̂ and a factorization C = ETΛE, where Λ is a diago-

nal matrix with λi being the ith eigenvalue of C. The top k eigenval-
ues are retained, and the resulting factorization projects users into k-
dimensional space. Eigentaste then clusters users in the k-dimensional
space (with k = 2) by recursive rectangular clustering and recommends
jokes based on the preferences of other users in a user’s cluster.

2.5 Probabilistic Methods

Besides the probabilistic item similarity functions discussed in Comput-
ing Item Similarity, several fully probabilistic formulations of collab-
orative filtering have been proposed and gained some currency. These
methods generally aim to build probabilistic models of user behavior
and use those models to predict future behavior. The core idea of proba-
bilistic methods is to compute either P (i|u), the probability that user u

will purchase or view item i, or the probability distribution P(ru,i|u)
over user u’s rating of item i (and the related problem E[ru,i], the
expected value of u’s rating of i).

Cross-sell [73] uses pairwise conditional probabilities with the
näıve Bayes assumption to do recommendation in unary e-commerce
domains. Based on user purchase histories, the algorithm estimates

108 Collaborative Filtering Methods

P (a|b) (the probability that a user purchases a given that they have
purchased b) for each pair of items a,b. The user’s currently-viewed item
or shopping basket is combined with these pairwise probabilities to rec-
ommend items optimizing the expected value of site-defined objective
functions (such as profit or sales lift).

Personality diagnosis [112] is a probabilistic user model that
assumes that a user’s ratings are a combination of their preference and
Gaussian noise (ru,i ∼ N(πu,i,σ), where σ is a parameter to the recom-
mendation model). For a user u, the probability of their true preference
profile being equal to that of each other user u′ (P (πu = ru′)) is calcu-
lated and used to compute a probability distribution over ratings for
items u has not yet rated. Prediction and recommendation are both
done by computing the expected value of the user’s rating using the
resulting distribution.

2.5.1 Probabilistic Matrix Factorization

Probabilistic latent semantic analysis (PLSA, also called PLSI or prob-
abilistic latent semantic indexing in the information retrieval literature)
is a matrix factorization technique similar to singular value decompo-
sition but arising from statistical probability theory rather than linear
algebra [64, 65]. Jin et al. [67] applied it to mining web usage patterns;
this led to its later application to recommender systems as a means
to protect collaborative filtering results from manipulation by users
Mobasher et al. [103].

The basis of PLSA is a probabilistic mixture model of user behavior,
diagrammed with plate notation in Figure 2.3(a). PLSA decom-
poses the probability P (i|u) by introducing a set Z of latent factors.
It assumes that the user selects an item to view or purchase by
selecting a factor z ∈ Z with probability P (z|u) and then selecting an
item with probability P (i|z); P (i|u) is therefore

∑
z P (i|z)P (z|u). This

has the effect of representing users as a mixture of preference pro-
files or feature preferences (represented as a probability distribution
over factors), and attributing item preference to the preference profiles
rather than directly to the users. The probabilities can be learned using
approximation methods for Bayesian inference such as expectation

2.5 Probabilistic Methods 109

Fig. 2.3 PLSI generative model: (a) models user purchases and (b) models real-valued
ratings varying by item.

maximization [37]. The probabilities can be stored in matrices, so that
the preference matrix P (where pu,i = P (i|u)) is decomposed into

P = ÛΣT̂
T

Û is the matrix of the mixtures of preference profiles for each user
(so ûu,z = P (z|u)) and T̂ is the matrix of preference profile probabilities
of selecting various items. Σ is a diagonal matrix such that σz = P (z)
(the marginal probability or global weight of factor z). This factoriza-
tion allows prediction to be done meaningfully in unary domains by
considering the probability that u will purchase i, in contrast to item–
item unary recommendation where the psuedo-predictions were only
useful for ranking candidate items.

Hofmann [64] discusses in more detail the particular relationship
between PLSA and SVD. The end result — a factorization of the rat-
ings matrix into three component matrices — is quite similar, but the
SVD is determined by minimizing error while PLSA is computed by
maximizing the predictive power of the model. In the SVD, U and T
are orthogonal matrices leading to a clear geometric or vector-space
interpretation of the model, while the PLSA component matrices Û
and T̂ are stochastic matrices with a natural probabilistic interpreta-
tion mapping more directly to generative models of user behavior.

PLSA can be extended to model ratings as well as purchases by
introducing the rating ru,i as a new random variable and assuming
that it is dependent on the latent topic z and either the specific user
or item under consideration, as shown in Figure 2.3(b) [65]. If the user

110 Collaborative Filtering Methods

is used, then it is assumed that u’s preference for i is determined only
by their preference for the latent factors z generating i; if the item is
used, then all users with the same preference for a factor z will have the
same preference for any item generated by that factor, with variation
dependent only on the individual items. The resulting networks can
again be learned by expectation maximization.

Blei et al. [20] extended the PLSI aspect model by using a Dirich-
let prior over user preferences for topics. This method is called latent
Dirichlet allocation and yields a more thorough generative model that
accounts not only for users purchasing items but also for users com-
ing into the system’s knowledge. Users, represented by their preference
for factors (the distribution P (z|u)), are considered to be instances of
a random variable drawn from a Dirichlet distribution. This model,
depicted in Figure 2.4, requires two parameters to be learned. For a
model with k factors, these are α, a k-dimensional vector parameteriz-
ing the Dirichlet distribution from which users are drawn, and β, the
k × |I| topic-item probability matrix (representing P (i|z)).

Another probabilistic method related to matrix factorization is
factor analysis [27]. This method learns a probabilistic variant of a
linear regression RT = ΛU + N, where Λ is an |I| × k model matrix;
U, a k × |U | matrix of user preferences for each of k different factors,
and N, a Gaussian noise matrix. By using expectation maximization
to learn Λ and the variance of the distribution from which the elements
of N are drawn, a model can be computed for deducing user prefer-
ences for factors from ratings and using those preferences to produce
recommendations.

Fig. 2.4 LDA model of users and purchases.

2.6 Hybrid Recommenders 111

2.5.2 Machine Learning Methods

A variety of other methods, usually probabilistic, from the machine
learning and artificial intelligence literature have also been applied to
recommendation. Some formulations of recommendation can be stud-
ied as classifier problems [22]. Recommenders have been built using
Bayesian networks [30, 157], Markov decision processes [136], and neu-
ral networks [125].

2.6 Hybrid Recommenders

It is natural to consider combining several different recommender
algorithms into a hybrid recommender system [24]. In some applica-
tions, hybrids of various types have been found to outperform individ-
ual algorithms [146]. Hybrids can be particularly beneficial when the
algorithms involved cover different use cases or different aspects of the
data set. For example, item–item collaborative filtering suffers when
no one has rated an item yet, but content-based approaches do not.
A hybrid recommender could use description text similarity to match
the new item with existing items based on metadata, allowing it to
be recommended anyway, and increase the influence of collaborative
filtering as users rate the item; similarly, users can be defined by the
content of the items they like as well as the items themselves. Fab used
such an approach, matching items against both the content of items
liked by the user and the content of items liked by similar users [13].

Burke [24] provides a thorough analysis of hybrid recommender sys-
tems, grouping them into seven classes:

• Weighted recommenders take the scores produced by several
recommenders and combine them to generate a recommen-
dation list (or prediction) for the user.

• Switching recommenders switch between different algorithms
and use the algorithm expected to have the best result in a
particular context.

• Mixed recommenders present the results of several recom-
menders together. This is similar to weighting, but the results
are not necessarily combined into a single list.

112 Collaborative Filtering Methods

• Feature-combining recommenders use multiple recommenda-
tion data sources as inputs to a single meta-recommender
algorithm.

• Cascading recommenders chain the output of one algorithm
into the input of another.

• Feature-augmenting recommenders use the output of one
algorithm as one of the input features for another.

• Meta-level recommenders train a model using one algorithm
and use that model as input to another algorithm.

Hybrid recommenders proved to be quite powerful in the Netflix
Prize: the winning entry was a hybrid of some 100 separate algorithms.
One important development to come from the prize competition is
feature-weighted linear stacking, a new weighting hybrid method used
by some of the top-ranking teams. Many weighting algorithms use a
linear combination of the predictions of many recommenders:

pu,i = α1p
(1)
u,i + · · · + αnp

(n)
u,i (2.20)

Feature-weighted linear stacking replaces each coefficient αj with a
function gj of item meta-features, such as number of ratings or genre,
to alter the blending ratio of the various algorithms’ predictions on an
item-by-item basis:

pu,i = g1(i)p
(1)
u,i + · · · + gn(i)p(n)

u,i (2.21)

This allows, for example, the relative weights of item–item CF and
actor list similarity to shift based on the number of ratings an item has
received.

2.7 Selecting an Algorithm

The various algorithms presented each have their strengths and weak-
nesses. User–user and item–item CF algorithms are well-understood,
easy to implement, and provide reasonable performance in most cases.
User-based algorithms tend to be more tractable when there are more
items than users, and item-based when the situation is reversed. Both
methods also require minimal offline computation at the expense of

2.7 Selecting an Algorithm 113

somewhat greater computational demands when recommendations are
needed (precomputing item–item CF improves query-time performance
at the expense of more offline computation). User–user CF seems to
provide greater serendipity in its recommendations; in the case of
MovieLens, this resulted in greater user satisfaction.

Matrix factorization methods require expensive offline model com-
putation steps. The resulting models, however, are very fast for online
use (prediction is simply a dot product). They are also capable of reduc-
ing the impact of ratings noise and can hamper the ability of users to
manipulate the output of the system by decreasing their direct impact
on each others’ ratings. Probabilistic models are applicable when the
recommendation process should follow models of user behavior.

In the end, the appropriate algorithm for a particular application
should be selected based on a combination of the characteristics of
the target domain and context of use, the computational performance
requirements of the application, and the needs of the users of the sys-
tem. User Information Needs discusses various needs users may have
from the recommender system. Understanding more fully what needs
are best met by what algorithms is a subject of ongoing research.

3
Evaluating Recommender Systems

When developing a recommender system, either a new algorithm or
a new application, it is useful to be able to evaluate how well the
system works. Since recommendation is usually a means to some other
goal (user satisfaction, increased sales, etc.), testing ultimately needs
to take this into account and measure the intended effect. However, it
can be costly to try algorithms on real sets of users and measure the
effects. Further, measuring some desired effects may be intractable or
impossible, resulting in the need for plausible proxies.

In the recommender systems literature, offline algorithmic evalua-
tions frequently play a major role. There has also been work on evalu-
ation methods themselves [61]. It is common to use offline analysis to
pre-test algorithms in order to understand their behavior prior to user
testing as well as to select a small set of candidates for user testing from
a larger pool of potential designs. Since user trials can be expensive to
conduct, it is useful to have methods for determining what algorithms
are expected to perform the best before involving users. Offline evalu-
ation is also beneficial for performing direct, objective comparisons of
different algorithms in a reproducible fashion.

This section describes commonly used data sets for offline eval-
uations of recommender algorithms, the basic structure of these

114

3.1 Data Sets 115

evaluations, and metrics that are used to evaluate performance. It con-
cludes with a brief discussion of online evaluations of recommender
performance.

3.1 Data Sets

Many recommender systems are developed in particular contexts, and
their evaluations will be on data sets relevant to that context or on
internal data sets. There are, however, several data sets that are pub-
licly available and are widely used in evaluating recommenders. They
form a basis on which the raw numeric performance of new algorithms
can be compared against known performance of existing systems in a
consistent environment, and can serve as a preliminary testing domain
in building a system for which no directly relevant data is available.

One of the early publicly available data sets was the EachMovie data
set. The DEC Systems Research Center operated a movie recommender
system called EachMovie; when the system was shut down in 1997, an
anonymized version of the data set was made available.1 This data set
consisted of 2.8 M user ratings of movies.

The MovieLens movie recommender, operated by GroupLens
research, was bootstrapped from the EachMovie data set [35]. It has
since made three data sets available: one with 100 K timestamped user
ratings of movies, another with 1 M ratings, and a third containing
10 M ratings and 100 K timestamped records of users applying tags to
movies.2 The ratings in the MovieLens data set are user-provided star
ratings, from 0.5 to 5 stars; older data sets have a granularity of 1-star,
while newer ones have 1/2 star granularity.

The Jester data set is a set of user ratings of jokes collected from
the Jester joke recommender system [50]. It consists of two data sets:
one has ratings of 100 jokes from 73,421 users between April 1999 and
May 2003, and the other has ratings of 150 jokes from 63,974 users
between Nov 2006 and May 2009. These ratings are continuous ratings
in the range [−10,10].3 As a result of the “gauge set” required by the

1 The EachMovie data set was later withdrawn in 2004.
2 The MovieLens data sets are available at http://www.grouplens.org/node/73.
3 The Jester data set is available at http://eigentaste.berkeley.edu/dataset/.

116 Evaluating Recommender Systems

Eigentaste algorithm, a portion of the Jester data set is dense: there is
a small set of jokes that almost every user has rated.

The BookCrossing data set is a collection of book ratings with some
demographic information about users, collected from the book sharing
and discussion site bookcrossing.com [156].4 It contains over 1.1 M
ratings from 279 K users for 271 K books. The ratings are a mix of
explicit real-valued (1–10) and implicit unary ratings.

The Netflix data set, made available in 2006 as a part of the Netflix
Prize [15], has been widely used as a large-scale data set for evaluating
recommenders. It consists of over 100 M datestamped ratings of 17 K
movies from 480 K users, with some perturbation applied to the ratings
in an attempt to preserve privacy. The data set was withdrawn in late
2009 after publicity surrounding research to de-anonymize anonymized
data sets [41, 105].

There are also other data sets in circulation from various sources.
Yahoo! Research operates one such collection, providing a variety of
data sets collected from Yahoo! services.

3.2 Offline Evaluation Structure

The basic structure for offline evaluation is based on the train-test
setup common in machine learning. It starts with a data set, typically
consisting of a collection of user ratings or histories and possibly con-
taining additional information about users and/or items. The users in
this data set are then split into two groups: the training set and the
test set. A recommender model is built against the training set. The
users in the test set are then considered in turn, and have their rat-
ings or purchases split into two parts, the query set and the target set.
The recommender is given the query set as a user history and asked
to recommend items or to predict ratings for the items in the target
set; it is then evaluated on how well its recommendations or predictions
match with those held out in the query. This whole process is frequently
repeated as in k-fold cross-validation by splitting the users into k equal

4 The BookCrossing data set is available at http://www.informatik.uni-freiburg.de/˜
cziegler/BX/.

3.3 Prediction Accuracy 117

sets and using each set in turn as the test set with the union of all other
sets as the training set. The results from each run can then be aggre-
gated to assess the recommender’s overall performance, mitigating the
effects of test set variation [53].

This form of offline analysis has formed the basis of many evalua-
tions of collaborative filtering, starting with [22]. Herlocker et al. [61]
used this method as the basis for a comparative analysis of various
evaluation methods and metrics.

Further refinements to the offline evaluation model take advantage
of the temporal aspects of timestamped data sets to provide more real-
istic offline simulations of user interaction with the service. A simple
temporal refinement is to use time rather than random sampling to
determine which ratings to hold out from a test user’s profile [53];
this captures any information latent in the order in which the user
provided ratings. Further realism can be obtained by restricting the
training phase as well, so that in predicting a rating or making a rec-
ommendation at time t, the recommendation algorithm is only allowed
to consider those ratings which happened prior to t [25, 53, 85]. This
comes at additional computational expense, as any applicable model
must be continually updated or re-trained as the evaluation works its
way through the data set, but allows greater insight into how the algo-
rithm performs over time.

3.3 Prediction Accuracy

When testing recommender algorithms that are based on predicting
user preference against a data set that expresses real-valued user ratings
(such as the star ratings in MovieLens or the continuous ratings in
Jester), measuring the accuracy of predicted values with respect to the
held-out ratings is a natural starting point for evaluating recommender
output.

A straightforward method of measuring the recommendation quality
is to measure the mean absolute error (MAE) [22, 58, 59, 112, 137],
sometimes also called absolute deviation. This method simply takes
the mean of the absolute difference between each prediction and rating
for all held-out ratings of users in the test set. If there are n held-out

118 Evaluating Recommender Systems

ratings, the MAE is computed as follows:

1
n

∑
u,i

|pu,i − ru,i| (3.1)

MAE is in the same scale of the original ratings: on a 5-star scale
represented as by integers in [1,5], an MAE of 0.7 means that the algo-
rithm, on average, was off by 0.7 stars. This is useful for understanding
the results in a particular context, but makes it difficult to compare
results across data sets as they have differing rating ranges (an error
of 0.7 is more consequential when ratings are in [1,5] than when they
are in [−10,10]). The normalized mean absolute error (NMAE) [50] is
sometimes used to address this deficiency. NMAE normalizes errors by
dividing by the range of possible ratings (rhigh and rlow are the maxi-
mum and minimum ratings in the system, respectively), resulting in a
metric in the range [0,1] for all rating scales:

1
n(rhigh − rlow)

∑
u,i

|pu,i − ru,i| (3.2)

NMAE results are harder to interpret in terms of the original ratings
scale but are comparable across data sets with different ratings scales.
They are therefore useful in measuring the impact of aspects of the
data set on the performance of a recommender.

Root mean squared error (RMSE) [61] is a related measure that
has the effect of placing greater emphasis on large errors: on a 5-star
scale, the algorithm is penalized more for being 2 stars off in a single
prediction than for being off by 1/4 of a star 8 times. It is computed
like MAE, but squares the error before summing it:√

1
n

∑
u,i

(pu,i − ru,i)2 (3.3)

Like MAE, RMSE is in the same scale as the original ratings.
Famously, it was the measure chosen for the Netflix Prize: the $1 M
prize was awarded for a 10% improvement in RMSE over Netflix’s inter-
nal algorithm. It can also be normalized for the rating scale like NMAE
by multiplying by 1/(rhigh − rlow).

3.4 Accuracy Over Time 119

Equations (3.1)–(3.3) all describe measuring the accuracy across
the entire data set at once. They can also be adapted to compute the
average error for each user and aggregate the average errors to com-
pute a score across the entire test set. Overall and per-user aggregation
can result in different relative performance measures for algorithms.
Aggregating by user provides a measurement of how users will expe-
rience the system, while overall aggregation gets at how the system
will perform in general. Examining the error distribution by user or by
item can be useful for identifying particular strong or weak areas for
the recommender, either in user taste or item type.

All three of these prediction accuracy measures effectively mea-
sure the same thing. Which one to use depends on how the results
are to be compared and presented (MAE vs. NMAE) or whether the
additional penalty for large errors is desired ([N]MAE vs. [N]RMSE).
They are only useful, however, for evaluating a recommender on the
predict task. They also have the drawback of treating errors equiva-
lently across items, while the error on low-importance items is likely
to have less impact on user experience than the error on popular or
important items.

To compute a single metric of predictive accuracy, we recommend
RMSE due to its increased penalty for gross prediction errors. If metrics
need to be compared between data sets, it can be normalized in the
same manner as NMAE.

Predictive accuracy metrics focus on the predict task, but can also
be indicative of a recommender’s performance for recommendation as
well. Koren [79] showed that, for a selection of algorithms, the ones with
better RMSE performance also were more consistent at recommending
movies users liked over randomly selected movies.

3.4 Accuracy Over Time

MAE and related metrics provide a static view of the predictive per-
formance of a recommender system outside of time. Often, though, the
performance of the recommender over time is interesting: does the rec-
ommender generate better results as more users use it? For individual
users, how does accuracy change as they add more ratings?

120 Evaluating Recommender Systems

This has led to the proposal of temporal versions of MAE and
RMSE. Time-averaged RMSE [85] requires that predictions be per-
formed in temporal sequence using only ratings before the current
time t, as discussed by Gunawardana and Shani [53], and computes
the RMSE over all predictions generated up to time t. Equation (3.4)
shows this computation, with nt being the number of ratings computed
up through time t and tu,i being the time of rating ru,i.

TA-RMSEt =

√√√√ 1
nt

∑
pu,i:tu,i≤t

(pu,i − ru,i)2 (3.4)

Lathia [84] also proposes windowed and sequential versions of this
metric, restricting the time-averaging to ratings with in a window
or simply computing the average error in a window, respectively.
Burke [25] proposes Temporal MAE, an MAE version of Lathia’s
sequential RMSE, and another metric called Profile MAE which pro-
vides a user-centric view of error over time. Profile MAE computes how
individual users experience the recommender, showing how the error in
the predictions changes as they add ratings. It is also computed by
considering each rating in temporal order, but averages error over the
number of items in the user’s profile at the time of prediction rather
than by user or time window.

3.5 Ranking Accuracy

For contexts where ranked lists of items are produced and item rankings
can be extracted from the user’s rating data, the algorithm’s capacity
to produce rankings that match the user’s can be measured.

Two ways of measuring this are with Pearson correlation or Spear-
man rank correlation coefficients. As noted by Herlocker et al. [61],
however, the Spearman rank correlation metric suffers when the rec-
ommender makes distinctions between items that the user ranks at the
same level. These metrics also penalize inaccuracy in the tail of the
recommendation list, which the user will likely never see, to the same
degree as inaccuracy in the top-predicted items.

Another metric for evaluating ranking accuracy is the half-life
utility metric [22]. It measures the expected utility of a ranked

3.5 Ranking Accuracy 121

recommendation list, based on the assumption that users are more
likely to look at items higher in the list; this assumption is reason-
able for many real systems such as e-commerce sites. It requires two
paremeters: a half-life α, such that the probability of a user viewing a
recommendation with rank α is 0.5, and a default rating d. d should be
selected to indicate neutrality, providing neither benefit for the user;
it can be the user’s mean rating, the system’s overall mean rating,
or some fixed neutral/ambivalent point in the rating scale. In unary
domains, where this metric is most frequently applied, d can be 0 for
“not purchased”, with purchased items having a rating ru,i = 1.

The half-life expected utility Ru of the recommendation list for a
user u is defined in Equation (3.5). ki is the 1-based rank at which
item i appears.

Ru =
∑

i

max(ru,i − d,0)
2(ki−1)/(α−1) (3.5)

In order to measure the performance of a recommender across users,
this metric is normalized by the maximum achievable utility Rmax

u for
each user, resulting in a value in [0,1] representing the fraction of poten-
tial utility achieved. Rmax

u is the utility achieved by listing the best
items for the user in order. The normalization is needed to compensate
for different users having different potential utilities; one way this can
happen is as a result of some users having more purchases to predict
than others. The overall score R is given by Equation (3.6).

R =
∑

u Ru∑
u Rmax

u

(3.6)

Half-life utility can be difficult to apply and compare, as it depends
on choosing α and d appropriately. The work of Agichtein et al. [2]
is helpful for approximating α in the absence of domain-specific data;
their analysis of search query logs shows that 50% of search result clicks
are on the top 5 items, making α = 5 a reasonable starting point.

Half-life utility suffers from the further drawback of penalizing rec-
ommendations of mildy-disliked and adamantly hated items equiva-
lently if d is a rating value indicating ambivalence about an item [61].
However, in domains suggesting natural values for the parameters, its

122 Evaluating Recommender Systems

focus on providing the highest-utility items at the beginning of the list
make it a powerful tool for measuring the ability of a recommender
to provide maximum value to users. Variants of it can be particularly
useful if more nuanced utility functions are available to substitute for
max(ru,i − d,0).

3.6 Decision Support Metrics

Recommender performance, particularly in unary domains such as pur-
chase histories, can also be evaluated in the precision-recall framework
of information retrieval derived from statistical decision theory [126].
This framework examines the capacity for a retrieval system to accu-
rately identify resources relevant to a query, measuring separately its
capacity to find all relevant items and avoid finding irrelevant items.
Figure 3.1 shows the confusion matrix, depicting the relationship of
these concepts. Recommenders are evaluated with retrieval metrics by
operating in a unary purchase domain, holding some items out of the
user’s profile, and considering the held-out purchased items to be rele-
vant to a query consisting of their remaining profile [22, 61, 131]. These
metrics can also be applied in non-unary ratings domains by using a
rating threshold to distinguish between liked and disliked items.

To be applied robustly, all of these measures require a fully-coded
corpus where every item is known to be either relevant or irrelevant to
the query under consideration. In recommender evaluation, however,
that data is not generally available — if an item has not been purchased,
it could be because the user does not like the item, or it could be because
they were unaware of it. If the recommender returns an item outside the
held-out target set, it still could be a relevant item. Care must be taken,
therefore, when designing and evaluating precision-recall assessments

Fig. 3.1 Retrieval confusion matrix.

3.6 Decision Support Metrics 123

Fig. 3.2 Precision (a) and recall (b) in the confusion matrix.

of recommender systems; nevertheless, it can be a useful framework for
understanding recommender performance.

The core metrics in precision-recall evaluations are the precision P ,
the fraction of items returned by the recommender that are purchased
(TP

TP+FP), and the recall R, the fraction of purchased items returned
by the recommender (TP

TP+FN) [126]. Figure 3.2 shows how these met-
rics relate to the confusion matrix. Since recommenders and retrieval
systems typically return ranked lists, these are usually computed for
some fixed recommendation list length N or sometimes for a threshold
score. For a given system, precision and recall are inversely related and
dependent on N , so comparing results between recommenders can be
cumbersome [61]; however, the combination can provide more insight
into the particular behavior of an algorithm than single-number mea-
sures. Different user tasks require different tradeoffs between precision
and recall — a user looking for a movie recommendation likely only
cares that they get a good movie (high precision), while a lawyer look-
ing for legal precedent needs to find all relevant cases (high recall).
Herlocker et al. [61] classify these two disparate needs as “Find Good
Items” and “Find All Good Items”.

Precision and recall can be simplified into a single metric, the F1

metric [124, 153], which has been used to evaluate recommender sys-
tems [131]:

F1 =
2PR

P + R

F1 blends precision and recall with equal weight. The resulting num-
ber makes comparison between algorithms and across data sets easy,
but does not facilitate more nuanced comparisons where one of the two
measures is more important than the other.

124 Evaluating Recommender Systems

Fig. 3.3 Sensitivity (a) and specificity (b) in the confusion matrix.

Precision and recall also ignore the lower right quadrant of the con-
fusion matrix — the true negatives, those items correctly identified as
irrelevant or disliked. In order to incorporate that quadrant into a met-
ric, a similar pair of metrics called sensitivity and specificity can be
used [83]. Figure 3.3 shows these metrics. Sensitivity is equivalent to
recall (the true positive rate) while specificity measures the fraction of
irrelevant items correctly discarded (the true negative rate).

A related but more comprehensive comparison method is the
relative operating characteristic (ROC, also called receiver operating
characteristic) curve [142]. This curve is derived from sensitivity and
specificity and plots sensitivity against the complement of the speci-
ficity. As the length of the recommendation list increases, more items
are included, until the entire item set (including all relevant and irrel-
evant items) has been returned. ROC curves effectively describe the
relationship of precision and recall across the range of their tradeoff,
showing how the recall of the system increases as precision requirements
decrease. Figure 3.4 shows some sample ROC curves. A recommender
which randomly returns items will, on average, plot a straight diago-
nal line; curves above the line are better than random. The further to
the upper-left corner of the plot the curve reaches, the better the rec-
ommender performs. A perfect recommender (which returns all target
items before any irrelevant items) will plot a vertical line to (0.0,1.0)
and a horizontal line to (1.0,1.0).

The ROC curve can also be used to derive a single numeric measure
of performance by computing the area under the curve, called Swet’s
A-measure or AUC; a perfect recommender will achieve an AUC of 1.
AUC is limited, as a given recommender system will operate a par-
ticular ratio of precision to recall or will move along the curve as the
user explores longer recommendation lists. It is useful, however, for

3.7 Online Evaluation 125

0.2

0.4

0.6

0.8

1.0

0.0
0.2 0.4 0.6 0.8 1.00.0

Random
Curve A
Curve B

1 - Specificity (false positive rate)

S
en

si
tiv

ity
 o

r
R

ec
al

l (
tr

ue
 p

os
iti

ve
 r

at
e)

Fig. 3.4 Sample ROC curves.

quantifying the tradeoff in precision necessary to increase recall with
a particular system, measuring in some sense the “efficiency” of the
recommender.

ROC curves are good for performing detailed assessments of the
performance of particular algorithms. Comparing them, however, is
challenging, particularly for large numbers of algorithms. Therefore,
precision/recall, F1, and AUC are useful for assessing relative perfor-
mance of various algorithms in decision support contexts at the expense
of oversimplifying recommendation performance.

3.7 Online Evaluation

Offline evaluation, while useful for comparing recommender perfor-
mance and gaining understanding into how various algorithms behave,
is limited in a variety of ways [88, 89, 98]. It is limited to operat-
ing on data regarding past behavior — a leave-N-out recommender
trial measures only the ability to recommend items the user found
somehow. Further, there is a selection bias in historical rating data, as
users are more likely to consume and therefore be able to rate items

126 Evaluating Recommender Systems

they perceive to be good. Time-based methods compensate for this
somewhat, but offline evaluations are incapable of measuring the rec-
ommender’s ability to recommend good items that the user did not
eventually find somehow. They also cannot measure how users respond
to recommendations or how recommendations impact business con-
cerns. Recommendation algorithms with similar numeric performance
have been known to return observably different results [97, 146], and a
decrease in error may or may not make the system better at meeting
the user’s needs. The only way to accurately assess these factors is to
do an online evaluation — to try a system with real users.

Online evaluations come in a variety of forms. Field trials — where
a recommender is deployed in a live system and the users’ subsequent
interactions with the system are recorded — enable the designer to
see how users interact with the recommender and change their behav-
ior in “real” environments. Since many recommenders are provided in
web-based contexts, page views, interface clicks, rating behavior, and
purchase behavior can be measured and used to assess the impact of
the recommender. Field trials, frequently in the form of A/B tests, are
commonly used in commercial recommender deployments where sites
have already established user bases and can test a new algorithm or
other site change on a small subset of their users [76, 77]. Amazon and
Google are well-known for using A/B testing in refining and evaluating
their services. Field trials can also be used to measure other aspects
of system performance such as recommender accuracy in response to
a change in the system [117]. When combined with user surveys, they
can be used to assess user satisfaction and other subjective qualities.
Recommender effectiveness with respect to business concerns can also
be measured in field trials using a variety of measurements used to
evaluate marketing campaigns [31].

Virtual lab studies are another common method for evaluating rec-
ommender systems. They can be used without access to a live user base,
and are therefore useful for testing new ideas for which no deployed
application exists or is available. They generally have a small number
of users who are invited to participate, and can take the form of inter-
action with a full application [19] or a survey structured around the
recommender [29, 39, 118, 146]. Virtual lab studies, while they provide

3.7 Online Evaluation 127

a great deal of flexibility and control in designing an experiment for
testing a recommender, create an artificial interaction that may affect
the applicability of the results to real applications.

Traditional in-lab studies are also used to evaluate recommender
systems [141], but virtual lab studies and field trials are generally more
common.

Many uses of online evaluation, such as measuring accepted recom-
mendations, page views, conversions, or sales lift, are well-understood.
Well-constructed surveys can help get at many other aspects of recom-
mender quality and utility. Determining ways to measure more subtle
aspects of recommender quality and user satisfaction is the subject of
ongoing research. Shani and Gunawardana [135] describe many aspects
of online and offline evaluations, and more work is needed to come up
with good ways to assess recommender’s ability to meet user’s needs.
User Information Needs discusses in more detail what some of these
needs are and surveys research on addressing them.

4
Building the Data Set

In order to provide recommendations to users, simply having a rec-
ommender algorithm is not sufficient. The algorithm needs a data set
on which to operate — a ratings matrix (or its functional equivalent)
must somehow be obtained from the users of a system. Brusilovsky [23]
provides a summary of how this is necessary in the broader space of
adaptive user experiences: the system must collect data about users
in order to model their preferences and needs and ultimately provide
them with a customized experience (in the present case, customized
recommendations or preference predictions).

The need for preference data can be decomposed into two types of
information needs. The system needs to know something about users’
preferences: what items (or types of items) does each user prefer? It
also needs to know something about items: what kinds of users like or
dislike each item? This breakdown is perhaps clearest when thinking
of matrix decomposition models for recommendation: the user–item
preferences are factored into a set of characteristics, user preferences for
those characteristics, and those characteristics’ applicability to various
items. These needs are also present in other models to varying extents:
the item–item CF model, for instance, needs to know what items are

128

4.1 Sources of Preference Data 129

liked by the same users (a combination of “what users like this item?”
and “what other items are liked by these users?”) as well as the current
user’s preferences.

These information needs come up in the recommender systems lit-
erature primarily under the guise of the cold-start problem. The cold-
start problem, in general, is the problem of providing recommendations
when there is not yet data available on which to base those predictions.
It takes two flavors:

• Item cold-start, where a new item has been added to the
database (e.g., when a new movie or book is released) but has
not yet received enough ratings to be recommendable [133].

• User cold-start, where a new user has joined the system but
their preferences are not yet known [34].

The bootstrap problem, where a system has no information about
any user preferences, is an extreme intersection of both aspects of the
cold-start problem.

Not only does a recommender system need data, it needs that data
to be of high quality in order to provide useful recommendations. If it
does not accurately know user preferences, its ability to generate useful
recommendations can suffer — prediction error is lower-bounded by the
error inuser ratings [62].Rating error (|ru,i − πu,i|, thedifferencebetween
users’ ratings and their true preferences) can be divided into two cate-
gories: natural noise, where user ratings differ from true preference due
to error in the rating collection process, and malicious noise, discrepant
ratings introduced for the purpose of manipulating the system’s recom-
mendations or predictions [109]. In this section, we are only concerned
with natural noise; malicious noise will be taken up in Robustness when
we discuss security implications of recommender systems.

4.1 Sources of Preference Data

Preference data (ratings) comes from two primary sources. Explicit
ratings are preferences the user has explicitly stated for particular
items. Implicit “ratings” are inferred by the system from observable
user activity, such as purchases or clicks.

130 Building the Data Set

Many recommender systems, in both academic and commercial
settings, obtain ratings by having users explicitly state their prefer-
ences for items. These stated preferences are then used to estimate the
user’s preference for items they have not rated. From a system-building
perspective, this is a straightforward method and avoids potentially
difficult inference problems for user preferences. It suffers, however,
from the drawback that there can, for many reasons, be a discrepancy
between what the users say and what they do.

Preferences can also be inferred from user behavior [106]. In the
Usenet domain, this has been examined by using newsgroup sub-
scriptions [69] and user actions such as time spent reading, saving
or replying, and copying text into new articles [104]. Konstan et al.
found a substantial correlation between the time a user spent reading
a Usenet article and his/her rating of that article [78], further support-
ing the idea that observable user behavior can be a useful source of
preference information. Consumption behavior has also been extended
beyond reading domains: while not a collaborative recommender sys-
tem, the Intelligent Music Management System plugs in to a user’s
music player and automatically infers the user’s preference for various
songs in their library as they skip them or allow them to play to comple-
tion [52]. The PHOAKS system mined Usenet articles for another form
of implicit preference data: mentions of URLs. It used the frequency
with which URLs are mentioned in Usenet articles to provide recom-
mendations for web resources [63]. In e-commerce domains, implicit
feedback in the form of page views and item purchases is the primary
source of preference data for recommendation [87].

System designers and analysts must be careful when using implicit
data to understand the mapping between system-visible user identities
(frequently accounts) and actual people. Users of e-commerce systems,
for example, will often purchase items as gifts for others. Those purchases
and related activity do not necessarily communicate anything about the
user’s tastes. Users will also share accounts on many systems; a fam-
ily may have a single Amazon.com account, for instance, thus providing
the system with an ill-defined aggregate of several people’s preferences.
Netflix deals with this problem by allowing each account to have multiple
profiles with separate ratings, queues, and recommendations.

4.1 Sources of Preference Data 131

O’Mahony et al. [109] argue that observed or inferred preference
information is expected to be noisier than explicitly provided data. It
is possible, however, that inference can build a more accurate long-term
profile of a user’s taste then they themselves can articulate.

Explicit and implicit rating data are not mutually exclusive. Sys-
tems can incorporate both into the recommendation process. Most rec-
ommender systems are capable of collecting some implicit information
at least through page views. As rating mechanisms become increasingly
prevalent in a variety of web sites, particularly e-commerce sites, fur-
ther hybrid data becomes available to the operator of those services.
Amazon.com makes use of both explicit and implicit data in providing
its various recommendations.

Rating data can also be obtained from external sources, although
this data may not be identifiably connected to users of the recipient sys-
tem. In systems with few users or brand-new systems facing the boot-
strapping problem, external data sources can be particularly valuable
in getting initial preference data to actually be able to make recom-
mendations. MovieLens did this by bootstrapping with the EachMovie
data set [35].

Preference data can also be taxonomized based on its relationship
to the user’s experience of the item. Table 4.1 shows how the experience
relation relates to implicit and explicit data with some examples.

• Consumption ratings are provided when the user has just
consumed (or is consuming) the item in question. These
ratings are particularly common in online streaming media
environments, such as the Pandora music recommender or
NetFlix instant streaming.

Table 4.1. Types of preference data.

Consumption Memory Expectation

Explicit Pandora song ratings,
GroupLens Usenet
article ratings

Netflix or MovieLens
movie ratings

House advertisement
ratings

Implicit Streaming video
watch time

Views of discussion
pages related to
previous purchase

Dwell time on new car
advertisement

132 Building the Data Set

• Memory ratings are provided based on the user’s memory of
experiencing the item. When a user watches a movie at the
theater and then rates it on MovieLens or MoviePilot, they
are providing a memory rating.

• Expectation ratings are provided when the user has not yet
experienced the item (and may never experience it) but is
willing to provide a rating anyway. One example is rating
housing options — the user will likely only have the means
and opportunity to truly experience one housing situation,
but may provide ratings on other house advertisements indi-
cating their level of appeal to the user.

In some ways, consumption ratings are the most reliable, as the
item is fresh in the user’s mind. Memory ratings are also based on
experience, so the user has a fuller set of data on which to base their
rating than in the expectation case, but their impression of the item
may not be accurately remembered or may be influenced by various
external factors [68]. Expectation ratings are the most limited, as
the user has not experienced the item and thus is rating it based
only on the information presented about it combined with whatever
prior knowledge they may have. They can still be useful, however,
particularly in high-cost domains.

4.2 Rating Scales

Mapping user preference to a rating scale is not an easy task. While
utility theory shows that there is a real-valued mapping for the pref-
erences of any rational agent [149], it is not necessarily easy for users
to express their preferences in this way. Further, preference is not a
function only of the item: contextual factors such as time, mood, and
social environment can influence a user’s preference, so provided ratings
may contain information about the context in which the user experi-
enced the item and, in the case of memory ratings, intervening events
or changes of mind as well as their preference for the item itself.

Recommender systems over the years have used (and continue
to use) a wide variety of different scales and methods for collect-

4.2 Rating Scales 133

Fig. 4.1 The MovieLens 5-star rating interface. The page also contains a legend, defining 1
to 5 stars as “Awful”, “Fairly Bad”, “It’s OK”, “Will Enjoy”, and “Must See”.

ing ratings [34]. Many of these systems are a numeric scale of some
kind: GroupLens used a 5-star scale [119], Jester uses a semi-continuous
−10 to +10 graphical scale [50], and Ringo used a 7-star scale [137];
Figure 4.1 shows a 5-star scale as deployed in MovieLens. These scales
are appealing to the system designer, as they provide an integral or
real-valued rating that is easy to use in computations. They also bene-
fit from the body of research on Likert scales in the survey design and
analysis literature [9, 43, 45].

Explicitly numeric scales are not the only scales in use. Some systems
use a “like”/“dislike” method — the Pandora music recommender pro-
vides thumbs-up and thumbs-down buttons which can be used to request
more songs like the current song or ban the current song from the station.
The Yahoo Launch music player used a real-valued “like” rating (0–100)
in combination with a “ban” button [34]. MovieCritic.com had users rank
films and derived ratings from these rankings.

Cosley et al. [34] found that users prefer finer-grained scales when
rating movies, and that scale had little impact on user ratings (users
rated items consistently even when using different scales). That work
also found that the rating scale had little impact on prediction accu-
racy. Therefore, using fine-grained scales (such as allowing 1/2 star
ratings) makes sense as users prefer it and it does not harm recom-
mender accuracy. There is little research into the particular impact of
rating interfaces in other contexts. Intuitively, simple like/dislike scales
seem useful in systems such as real-time music recommenders where

134 Building the Data Set

the user actually experiences the item rather than receiving a list of
suggestions. It is important to include both like and dislike, however;
in a study of user rating behavior for movie tags, Sen et al. [134] found
that users with both “like” and “dislike” buttons provided more ratings
than users with only one rating option, and users who had a “dislike”
button but no “like” button provided far more ratings than users whose
only option was “like”.

When implicit ratings are collected, the observed user events must
be translated into computationally useful estimators of preference [106].
Purchases, page views, and data such as the mention data used by
PHOAKS are frequently treated as unary ratings data: purchased items
have a “rating” of 1 and other items have unknown ratings [71]. With
unary ratings, all that is known is that the user purchased a particular
set of products: the fact that the seller does not have any information
on a user’s interest in other products does not imply that the user
does not like those products. They may be unaware of the existence
of unpurchased products (a situation the recommender likely aims to
change), or they may have purchased them from a different vendor.
Therefore, while a purchase can be considered a vote for a product, a
lack-of-purchase alone may not be considered a vote against.

Other forms of data, such as the time spent on a page, also provide
useful data points for inferring user preference. In the Usenet domain,
time spent reading an article correlates strongly with the user find-
ing that article interesting [78, 104]. It can be beneficial to consider a
variety of observable user activites, particularly to discern the user’s
interest in an item they have not purchased in a commerce domain.

4.3 Soliciting Ratings

Beyond the input method used for providing ratings, there are also
questions to consider in selecting which items to ask or encourage users
to rate. To optimize individual user experience, a recommender system
should provide quality recommendations with as enjoyable a rating
experience as possible; in some cases, that may mean minimizing the
effort required from the user, but requiring work users perceive as mean-
ingful can result in higher user loyalty [96]. It should also provide an

4.3 Soliciting Ratings 135

enjoyable experience for the user. Therefore, when a new user joins
the system, conducting the initial “interview” strategically, aiming to
maximize the information gained about the user’s tastes for the items
presented for rating, can provide a smooth initial user experience. This
is not the only consideration, however — recommender systems have
multiple users, and collaborative filtering depends on knowing as many
users’ preferences for items as possible. Therefore, interview strategies
can also attempt to improve the system’s ability to serve the user base
as a whole by asking users to rate items for which few ratings have
been collected. Further, new users are not the only entities about which
information needs to be collected. New items also present a problem,
and the system has the opportunity to strategically present them to
existing users to gain an understanding of their appeal profile.

Information and decision theory provide some insight into how this
problem can be approached. Value-of-information (VOI) calculations
can be used, based on estimated improvement in prediction accuracy,
to ask the user to rate items that provide the system with the highest
expected improvement in quality [112]. Entropy-based measures can
also be used, determining which items will likely provide the system
with the most information about the user’s taste [117]. The user’s pref-
erence for a movie with high variance in ratings tells the system more
about that user’s taste than their preference for a movie with more
uniform ratings. Entropy alone, however, is not sufficient, as there may
be many items with high information value that the user is unable to
rate. Therefore, a probability that the user will be able to rate the item
must also be factored in to the decision process; Rashid et al. [117] used
the popularity of items, asking the user to rate items that were both
popular and had high information value. The structure of the result-
ing formula is similar to value-of-information, maximizing the expected
information gain.

The cost of consuming items is also a factor in the ability of a
system to solicit user ratings and fill in user taste profiles. Movies, for
example, have a higher cost of consumption than songs — even if the
media is free, it takes around 2 hours to watch a movie while many
songs last only 3–4 minutes. Therefore, a movie recommender is likely
to depend on finding movies users have seen in order to collect ratings

136 Building the Data Set

(thus relying predominantly on memory ratings). A music recommender
can have more flexibility — systems like Pandora or Launch.com can
actually play the song for the user to get their opinion of it rather
than just giving them a title and artist. Similarly, Jester has users
rate jokes based on reading the joke; the small cost of reading a joke
allows Jester to present the same starting set of jokes to each user to
build an initial version of their preference profile [50]. These sytems
are therefore able to make greater use of consumption ratings. Some
domains, such as house or car purchases, have potentially very high
cost, where items are expensive and their true utility is not fully known
until they have been used for an extended period of time. Systems
in such domains are therefore either unable to use ratings or depend
primarily on expectation ratings.

A further consideration in soliciting ratings is whether or not to
show the user’s predicted preference in the rating interface. Cosley
et al. [34] found that predicted preferences influence users’ ratings, and
that some expert users are aware of this influence. System designers
should be aware of this and careful to consider what impact it will
have on their users.

There has also been work looking more directly at user motivation
and willingness to provide ratings. Harper et al. [56] provide an eco-
nomic model for user behavior in providing ratings. This incorporates
some issues already discussed, such as the time and effort needed to
provide a rating, and provides a framework for reasoning about how
users are motivated to interact with recommender systems. Avery and
Zeckhauser [11] argue that external incentives are needed to provide
an optimal set of recommendations and that market-based systems or
social norms can provide a framework for promoting user contribution
to the rating data.

4.4 Dealing with Noise

The process of expressing preference as ratings is not without error —
the ratings provided by users will contain noise. This noise can result
from normal human error, confounding factors in the rating process
(such as the order in which items are presented for rating), and other

4.4 Dealing with Noise 137

factors in user experience (e.g., a noisy theater detracting from the
enjoyment of an otherwise-good movie). Detecting and compensating
for noise in the user’s input ratings therefore has potential to result in
better recommender systems.

Natural noise in ratings can be detected by asking users to re-rate
items [5, 34, 62]. These studies all found that users’ ratings are fairly
stable over time. Amatriain et al. [5] further found that moderate pref-
erences — 2 or 3 on a 1–5 scale — are less stable than extreme like or
dislike, and performed a more thorough analysis of the re-rating data
to determine that ratings are a reliable method of measuring user pref-
erences by the standards of classical test theory. Once noisy or unstable
preferences have been detected, they can be discarded to improve the
recommender’s prediction accuracy [6].

O’Mahony et al. [109] proposed detecting and ignoring noisy ratings
by comparing each rating to the user’s predicted preference for that
item and discarding ratings whose differences exceed some threshold
from the prediction and recommendation process. This approach, how-
ever, makes the assumption that all high-deviance ratings are a result
of user error rather than aspects of user preference for which the system
cannot yet account, and discarding such ratings may inhibit (at least
temporarily) the system’s ability to learn that aspect of the user’s taste.

Some recommendation algorithms have noise built into their user
ratings model. Personality diagnosis explicitly assumes that user-
provided ratings have Gaussian noise, being drawn from a normal distri-
bution whose mean is the user’s true preference [112]. Analyzing ratings
with this model in a näıve Bayesian framework allows data from other
users and the smoothing effect of probabilistic inference to compensate
somewhat for noise in individual ratings.

5
User Information Needs

Recommender systems do not exist in a vacuum. Treating recommenda-
tion abstractly as mathematical problem, aiming primarily to improve
offline evaluations with prediction accuracy metrics such as RMSE,
ignores the broader context of use and is not necessarily measuring
the impact these systems have on their users. Re-grounding recom-
mender systems in user needs can have a profound impact on how
we approach the field. Anchoring both the design of the recommender
system itself and the evaluation strategy used to measure its effective-
ness to a detailed understanding of user goals, tasks, and context can
enable us to build systems that better serve their users [74, 99].

Users use a recommender system for some purpose. With systems
like GroupLens and PHOAKS, that purpose can be to more easily filter
throughhighvolumesof articles andfind interestingnewresources.Movie
recommenders can help users find new movies and choose films to watch.
A joke recommender can provide entertainment. In each case, we can con-
sider the recommendations tohave someutility to theuser.Userneeds can
also extend beyond the recommendation list — some users interact with
recommender systems for the purpose of self-expression, with the rating
process rather than the resulting recommendations being their desired
end [56, 61]. Evaluation metrics are useful, therefore, to the extent that

138

5.1 User Tasks 139

they map to (or at least correlate with) the user’s utility derived from
the system’s output (recommendations and predictions) and the over-
all experience it provides. Task- and need-driven user-based studies are
needed to determine what factors actually do affect the system’s ability
to meet user needs and improve the user experience.

5.1 User Tasks

The classical recommender tasks of predict and recommend can be
re-cast in terms of user needs as “estimate how much I will like an
item” and “find items I will like”, respectively [61]. User needs can also
take more nuanced manifestations. For example, users can use a recom-
mender system to find new items the may like (introduction) or to recall
previous items they enjoyed (reuse); systems like the Pandora music
recommender are built to meet these two needs in balance (users want
to discover new music while also listening to music they know they like).
Users can also be interested in merely exploring the item space (explore,
the “Just Browsing” task of Herlocker et al. [61]) rather than support-
ing a particular decision (make decision). Some users have the goal of
determining the recommender’s credibility (evaluate recommender) —
they may wish to see how the recommender does at estimating their
preference for items they know well in order to determine how much
they trust its unfamiliar recommendations (or how much time they
want to invest in training the system). By supporting this last task, a
balance of familiar and unfamiliar items can be important in a devel-
oping long-term relationships between users and recommenders [99].

The type of interaction the user has with the recommender also
impacts how it should perform. Does the user treat the recommender
as an information source to be searched, or as a decision support tool?
Even when using a recommender for decision support, users still have
differing goals. In some cases they may be primarily interested in explor-
ing the space of options. They may turn to the recommender to pro-
vide them with a candidate set from which they will choose. In other
cases, they may want the recommender to actually make the selec-
tion. A movie recommender or an e-commerce site is likely to be used
to explore or determine a candidate set; the user generally makes the

140 User Information Needs

final decision on which movie to see. Real-time music recommenders
such as Pandora, however, select a song for the user to hear next, pro-
viding the user with a means for critiquing the decision but not often
do not allow the user directly select from a set of items.

Even recommenders with equivalent numerical performance can
have qualitative differences in their result lists [146]. McNee et al. [99]
call these personalities, and choosing an algorithm whose personality
matches the user’s needs can provide greater user satisfaction.

5.2 Needs for Individual Items

Thinking about prediction from the perspective of user perception
has led to the adoption of some common evaluation metrics: RMSE’s
increased penalty for high error and other variants on MAE designed
to distinguish high error both stem from the assumption that users are
likely to forgive a small error in preference estimation (such as mis-
predicting by half a star), while gross errors (predicting a 3-star movie
as a 5-star) will more significantly hamper user experience. It is also
frequently more important to be accurate at the high end of the scale:
if the system correctly predicts that the user will dislike an item, does
it matter how much they will dislike it?

Another need users may have in their use of the recommender
system is serendipity [98, 116]. Serendipity is the ability to recom-
mend items that the user likes but does not expect; a movie, perhaps,
that they never would have thought of liking but, once recommended,
turned out to be enjoyable. Since users frequently use recommenders to
learn about and try things that they would not otherwise know about,
serendipity is generally a desirable characteristic of a recommender.

Related to serendipity is the factor of risk — what are the odds
the user will like the item? If the system is recommending items that
the user does not expect, it could be wrong sometimes and recommend
a bad item. In some contexts, users may be better served by a rec-
ommender which is more aggressive in exploring the boundaries of the
user’s preference space in hopes of achieving serendipity, while other
contexts may merit a more conservative system that prefers to avoid
the chance of a bad recommendation.

5.3 Needs for Sets of Items 141

Risk can be modelled by the system’s confidence in its prediction,
but that still leaves open the question of how much risk to take. Is the
user more interested in finding potentially great items, or will the user
accept merely good items in order to avoid bad ones, even if that
involves missing potentially valuable recommendations? This is a func-
tion of both the user’s desires and the characteristics of the domain.
In low-cost domains, particularly interactive ones such as music rec-
ommenders, the cost of following a bad recommendation is low, so a
recommender with riskier behavior may be more appropriate than in a
higher-cost domain.

The issue of new versus old items arises here as well. If the user’s task
is “find a movie to go see this weekend”, they are likely not interested
in a movie they have seen before. But if it is “play some music for my
commute”, a blend of old and new may well be appropriate. Careful
analysis of who the users are and what they expect from a system will
provide insight into how to design the recommendation strategy.

5.3 Needs for Sets of Items

Many recommenders do not just recommend a single item to the user.
They present a list, usually ranked, of items for the user to consider.
Even recommenders which, at first glance, deal with individual items at
a time may have a sense of the set or the whole: a music recommender
plays invidiual songs in turn for a user, but the user perceives a sequence
of songs as well as the individual selections [40].

At a basic level, the rank-accuracy metrics fit in line with viewing
recommendation from a user perspective, as the exact preference pre-
diction frequently does not matter when the user is only presented with
a ranked list of choices. Half-life utility [22] adds the additional factor
of modeling whether the user will even see the item in question, making
it useful for assessing utility to the user in search-like contexts.

When users receive a list of recommended items, they do not expe-
rience it as a list of individual items but rather experience the list as
an entity itself. It can well be that the best 5 items do not necessarily
make the best 5-item recommendation list.

142 User Information Needs

Research on research paper recommendations has shown that differ-
ent algorithms produce lists that are better-suited for different goals:
some algorithms produce lists better-suited for finding novel or author-
itative work on a topic, while others produce lists that are better intro-
ductory or survey reading lists [146]. Users could discern differences
between lists produced by different algorithms, including varying appli-
cability to different tasks.

Perhaps the most prominent potential need users have when it
comes to sets of items is that of diversity. Ali and van Stam [4] noted
that, with standard collaborative filtering technology, a TV viewer who
enjoys both science fiction shows and boating programs, but who has
seen and rated more science fiction, may never receive boating recom-
mendations. This domination of a profile by a single genre can reduce
the recommender’s capacity to satisfy the user needs across their mul-
tifacted interests.

Diversity in recommendations can desirable from two standpoints.
First, users may have a variety of tastes, some expressed more strongly
than others, and benefit from the recommender being able to recom-
mend items across the breadth of their preferences. In many cases, the
recommender should not only span their interests but also be able to
push at the edges of the user’s known interests with the hopes of intro-
ducing them to material that they enjoy but would not have found
otherwise. Immediately, it needs to avoid pigeonholing users — the
science-fiction and boating TV viewer of Ali and van Stam’s portfolio
effect may want to watch a good boating show in a Saturday after-
noon, and the recommender may have an insufficient sense of diversity
to provide one.

Second, excessively narrow recommendations have the potential to
fragment communities into small pockets with little in common, with
the rate-recommend cycle reinforcing an increasingly focused taste at
the expense of breadth. Societally, this balkanization can decrease com-
munication and interactions between groups of people [147].

Diversity is not always a desirable aim, however. Some user needs
are better met by a more focused set of recommendations, and the
need for diversity can change over time. Consider buying a house: in

5.3 Needs for Sets of Items 143

the early stages, recommending a wide variety of styles, prices, and
neighborhoods could be a good strategy. As the user looks at houses
and sees what they do and do not like, narrowing the field of recom-
mendations to a more focused set of options can help them to make
their final decision. In the latest stages, it can be desirable to recom-
mend several effectively substitutable options in case one is unavailable.
Again, understanding the user’s needs and relationship to the system is
key to determining the role diversity should play in recommendation.

To add diversity to a recommendation list, Ziegler et al. [156] pro-
posed “topic diversification”, a method which discards some items of a
recommendation list in favor of others to increase the diversity of items
within a recommendation list; users found this to more comprehen-
sively capture their reading interests in a study using the BookCrossing
data set.

Another recent and promising approach for optimizing the variety of
choices presented to the user in a recommendation set is regret-based
recommendation [148], a recommendation algorithm based on utility
theory. This method uses a model of the user’s utility to recommend
a set of items with minimal expected loss. The basic idea behind its
operation is that a recommendation set that contains only comedies will
have greater loss if the user is in the mood for an action movie than a
set containing a mix of comedies and action movies. This framework is
not just applicable to diversity, but can be adapted to address a host
of whole-list concerns.

Key to both of these algorithms is that they consider the set of
recommended items as a whole rather than simply picking the best
individual recommendations. Seeking to maximize the expected utility
of a set of recommended items rather than focusing on maximizing the
user’s interest on a per-item basis is a step forward in improving user
experience across diverse tastes.

In order to understand and reason about diversity in recommenda-
tions, it is useful to understand more generally what diversity is and
how to measure it. Harrison and Klein [57] identify three types of diver-
sity studied in operations research: separation, where the members of
a set are at different positions on a linear continuum; variety, where
members of a set are members of different classes; and disparity, where

144 User Information Needs

some members of a set have a higher status or position or are otherwise
superior to other members. Separation and variety seem to be particu-
larly relevant to assessing recommendation and preference: movies can
be more or less violent (separation), and they can be of differing genres
or from different directors (variety). Harrison and Klein’s review also
provides metrics for measuring the various types of diversity: standard
deviation and Euclidian distance can be used to measure separation,
and Blau’s index and Teachman’s entropy index are both useful for
measuring variety among classes. Ziegler et al. [156] used the average
pairwise similarity of items in a recommendation set, with proximity
in a hierarchical taxonomy of the item space as the similarity metric,
to measure the similarity (lack of diversity) within recommendation
lists.

Measuring diversity is useful in understanding the behavior of a
particular system, but the extent to which the diversity of a recommen-
dation list impacts that list’s ability to meet a user’s need is harder to
measure. It is also not always obvious what forms of diversity relate
to users’ needs. Ziegler et al. [156] found that increasing the diversity
across Amazon.com book categories improved user’s assessment of the
value of book recommendation lists they received up to a point, after
which further diversification decreased perceived value. The nature and
impact of diversity will vary across information domains and user tasks.

Another major concern in set recommendation is that of interaction
effects. Some items, while good individually, are either particularly bad
or particularly good together [55]. Accounting for these is a difficult
problem, and package recommendation under constraints frequently
becomes NP-hard [152]. However, recommendations often do not need
to be perfect — approximation algorithms are often sufficient — and
some relationships or properties that are difficult or impossible to com-
pute can, in some cases, be determined by humans and fed back into
the system [150].

5.4 Systemic Needs

Not only do users have particular needs for individual items and rec-
ommendation lists, they have needs from the system as well.

5.4 Systemic Needs 145

5.4.1 Coverage

While many user needs are satisfied by finding some good items, and
missing some items does not cause a problem, there are other cases
where the penalty for missing items is high — high recall is critical [61].1

This can be the case in locating research literature, where it is undesir-
able to overlook prior work, but is even more critical in legal settings:
missing prior work in a patent application or a relevant precedent while
handling litigation can have drastic consequences.

The concept of coverage provides a useful framework for analyzing
how a recommender algorithm does or does not exhibit this problem.
Simply put, the coverage with respect to a user is the fraction of the
total item domain which the algorithm could possibly recommend to
the user (in typical collaborative filtering algorithms, this is the set of
items for which predictions can be generated for the user). In a user–
user recommender, the ability to recommend an item i is dependent on
the user having potential neighbors which have rated i; in an item–item
recommender, it is dependent on the user having ratings for items in i’s
list of neighbors. Other algorithms can have similar limitations on their
ability to recommend particular items based on the information they
possess.

One way to alleviate coverage problems is by falling back to a
baseline recommender when the collaborative filter cannot generate
a prediction. Hybridizing algorithms with different coverage profiles
can also help improve coverage. If the composite recommenders are of
significantly different structure, this method can increase the system’s
ability to recommend some items. Latent factor models, such as SVD
and PLSA, can also provide good coverage because the latent factors
can connect users to items that they would not be connected to just
through item or user neighborhoods.

McLaughlin and Herlocker [95] proposed a modified precision met-
ric to measure the ability of a recommender to recommend items which
takes coverage into account, penalizing algorithms with low coverage.

1 Recall can rarely be directly measured. Data sets only contain rated items, while recall
pertains to fining all relevant items regardless of whether they are already known to the
user.

146 User Information Needs

They then showed that a modified user–user recommender that oper-
ates by propagating belief distributions over rating offsets between
similar users is able to achieve much better coverage at the expense
of some accuracy compared to standard user–user and item–item CF.
The balance with regards to coverage, accuracy, and computational
requirements will vary by domain and application.

In addition to the impact of coverage on user needs, the system
provider may also have an interest in coverage — if there are items
which cannot be recommended, then it may be more difficult to sell
those products.

5.4.2 Robustness

In order for recommendations to be useful to users, they need to be
robust and fair. Recommendations should reflect the true opinions of
legitimate users of the site, with minimal degradation due to natural
noise and free from bias introduced by malicious users attempting to
manipulate the system’s ratings.

Having considered naturally-occurring noise in Dealing with Noise,
we turn here to considerations for malicious users. An unscrupulous
manufacturer desiring to sell more of their product may attempt to
create accounts on e-commerce sites using recommender systems and
strategically rating their product highly in order to cause it to be rec-
ommended to more users. Similarly, other groups may want to destroy
a particular product’s recommendation level or otherwise manipulate
the recommendation system’s output. Examples of this are so-called
“Google Bombs”, where link profiles are set up to cause a particu-
lar page to rate highly for specific searches, such as “miserable fail-
ure” returning the White House page for Bush’s administration as the
first result. Similar attacks have been carried out against Amazon.com,
manipulating the “products you might also like” lists — a group of
attackers succeeded in getting a book on gay sex listed as a related
item for a Pat Robertson book.

Attacks based on false profiles, sometimes called shilling or sybil
attacks, have received a fair amount of treatment in the literature.
O’Mahony et al. [108] have examined the robustness of user-user

5.4 Systemic Needs 147

collaborative filtering to such attacks. Lam and Riedl [82] found that
profile-based attacks can influence predictions and recommendation,
but that item–item CF is less vulnerable than user–user to such attacks.
Matrix factorization approaches (specifically PLSA) are also fairly
robust to attack [103]. Further, it is difficult to reliably detect the pres-
ence of malicious user profiles using standard recommender accuracy
metrics, although classifer-based methods can detect some errant pro-
files [102]. Resnick and Sami [120] proposed a reputation-based system,
the influence limiter, which can be added to any collaborative filter-
ing system and uses reputation scores, computed by determining which
users contribute to accurate prediction of a target user’s ratings, to limit
the influence of individual users on the target user’s recommendations.

Many currently known attacks exploit knowledge of the recom-
mender algorithm in use, and sometimes additional information such as
the average rating for a given item. Sometimes specific weaknesses can
cause a marked increase in attack success. For example, recommenders
based on Pearson correlation without similarity damping are suscepti-
ble to shilling attacks with small attack profiles, as two users with few
ratings in common have abnormally high Pearson correlations [108].

So far, most research on the robustness of collaborative filtering
to manipulation has focused on a few specific attack methods, most
notably the creation of false profiles with the goal of artificially boost-
ing or depressing an item in recommendation lists. Little is known
about other attack methods or attacks aimed at different goals (such
as an attack attempting to discount the credibility of the system by
causing it to generate spurious or bogus recommendations). Resnick
and Sami [121] have shown that there is an inherent tradeoff between
manipulation-resistance and taking advantage of the information in
user ratings; in order to resist manipulation by an attacker capable of
creating an unbounded number of shill profiles, a system must discard
all user ratings.

5.4.3 Privacy

Recommendation is not the only need users have with respect to their
relationship with a recommender system. Among other things, they

148 User Information Needs

may also desire privacy: ratings data can communicate a fair amount
about a user’s preferences and habits, and users may want to restrict
the extent to which that data can be discovered by other users in a
system (or even the system itself). Further, privacy is a significant
consideration when releasing data sets to the public. There has been
notable success in taking anonymized data sets, such as the Netflix
Prize set, and de-anonymizing them (determining the identities of par-
ticular users) [41, 105].

An immediate privacy concern, at least within the e-commerce
domain, is the ability for users of a system to gain information about
other users. Ramakrishnan et al. [116] analyzed this problem, find-
ing that users who tastes straddle seemingly-disparate regions of the
item space can be susceptible to identification by other users of the
system with access to aggregate sales data. They advised refraining
from using connections involving a small number of people in producing
recommendations so that the observable behavior of the recommender
is based on sufficiently large samples that it is infeasible to identify
individual users. The requirements for this attack are fairly sophisti-
cated, but feasible with vendors sharing data and utilizing third-party
personalization services.

Research has also considered recommendation schemes that allow
users to receive recommendations and/or predictions without any
central party knowing all users’ ratings. Canny [26, 27] proposed
factor analysis with this goal in mind, using homomorphic encryp-
tion and zero-knowledge protocols to allow users to collaboratively
compute a recommendation model without disclosing their individual
ratings. Other matrix factorization techniques such as singular value
decomposition have also been deployed to implement decentralized rec-
ommenders: the PocketLens algorithm used SVD with encryption to
perform decentralized collaborative filtering on hand-held devices [101]
and Polat and Du [113] proposed using SVD with randomly-perturbed
data to preserve privacy.

Hybrid methods, involving central servers that are partially trusted,
have also been considered. Notable among these is Alambic, an archi-
tecture which separates purchasing and recommendation [8]. It calls for
recommendation providers to be distinct from e-commerce providers,

5.5 Summary 149

so that the e-commerce vendor does not know a user’s history and the
recommendation provider does not know their current activity. There
have also been proposals to have users share and aggregate their ratings
before submitting them to the central server [138].

Kobsa [75] provide a thorough analysis of the privacy concerns in
personalization systems in general, including legally imposed condi-
tions. We refer you to that work for further reading on this aspect of
the user–recommender relationship.

5.5 Summary

Within results of equivalent accuracy or numerical quality, there is still
sufficient variation that algorithms with equivalent accuracy perfor-
mance can produce recommendations that are qualititatively different
from each other in terms of user response. This provides opportunity to
tailor a recommender system deployment to meet the particular needs
of its users. This can be done by tuning the algorithm to the expected
needs [99], providing (or automatically adjusting) parameters to influ-
ence its behavior [156], or switching algorithms based on the user’s
current task [156].

As with user interface design (and, indeed, design for any system
that interacts with humans), clearly identifying the user tasks the
system is intended support and what users expect from the system
provides a useful framework for the design and evaluation of a recom-
mender system. At the end of the day, users are more concerned with
having their needs met or otherwise getting value from a system than
numeric measures of its accuracy.

6
User Experience

In order to move from predicting preference to meeting user needs, rec-
ommender systems must interact with their users in some fashion. They
need to collect ratings, frequently requiring user interaction (although
this interaction is occasionally indirect), and they must present the
recommendations or predictions back to the user.

Recommenders also have the opportunity to integrate more broadly
with user experience, particularly the social context in which recom-
mendations are received and used. There have also been projects to
use recommenders to affect user behavior in ways beyond purchasing
products or seeking entertainment.

This section surveys a variety of work that has been done on user
interaction with recommenders and on the ways in which recommenders
interact with user experience and social contexts. Better understanding
of human–recommender interaction and how recommenders affect and
are affected by the people who use them is also an important direction
for further recommender systems research.

6.1 Soliciting Ratings

As discussed in Rating Scales, a variety of methods have been tried
for soliciting ratings from users of recommender systems. GroupLens

150

6.2 Presenting Recommendations 151

augmented standard newsreaders with buttons or commands for apply-
ing ratings of 1–5 stars [119]. Jester provided a continuous bar that
recorded the position at which users clicked it as their rating (using an
HTML image map) [50]. MovieLens uses drop-down menus or images
for users to select 1–5 star (with half-star) ratings; some early recom-
menders interacted with users via e-mail.

The most common interface construct for allowing users to provide
ratings is a rating widget of some kind displayed with the item either
on an item info details or in its entry in a list. In general, the rating
interface will need to integrate well with the rest of the application
or site’s user experience, and standard human–computer interaction
design principles apply (including using interface devices familiar to
users from other systems). There is currently a good deal of inconsis-
tency, even within a single system, with regards to how ratings are
collected; Karvonen et al. [70] provide a heuristic evaluation of several
popular web sites with rating or reputation interfaces and demonstrates
a number of consistency issues. Live deployments are not all bad, how-
ever; Netflix star ratings and Pandora’s thumbs up/down are good
examples of current best practices in rating interfaces.

Users prefer more granularity in their ratings interfaces — on a
5-star scale, they like to be able to give half-star ratings — so it is
beneficial for the user experience to allow a relatively fine-grained rating
process, but the increased granularity of ratings will not necessarily
translate into more accurate recommendations [34].

6.2 Presenting Recommendations

Once the system has collected user ratings and computed recommen-
dations, it must communicate those recommendations to the user so
that they can evaluate and potentially act on the recommended items.
Communicating predictions is fairly straightforward — in an item list-
ing or details view, the predicted preference can be shown as a feature
of the item. MovieLens does this, replacing the predicted preference
with the user’s actual rating when it is an item they have rated.

Methods of presenting recommendations have changed as commu-
nications technology evolved. In the early 1990s, when the Web was

152 User Experience

young and had not yet achieved widespread usage, recommenders such
as BellCore’s video recommender interacted with the user via e-mail:
users e-mailed ratings of movies to videos@bellcore.com and received
recommendations in an e-mail reply [62]. The majority of recommender
systems are currently built into web sites. TV set-top boxes are also
used as a delivery mechanism for recommendations [4], soliciting rat-
ings via the remote control and presenting the user with a list of recom-
mended shows with their air dates. Increasing usage of sophisticated cell
phones have made mobile recommendations increasingly a reality [100].
Delivering recommendations via devices other than traditional PCs has
the potential to bring recommendation much closer to the actual con-
text of use for a wider variety of items — TV shows or movies can be
immediately watched, and users can receive product recommendations
while in the store or at the theater.

There is more diversity in approaches to showing recommendations.
Some systems, such as MovieLens, merely have a view where items
are displayed in a search results fashion ordered by predicted prefer-
ence. Others display various forms of recommendations in-line with
the browsing experience: many pages on Amazon.com, such as prod-
uct information pages and shopping baskets, show recommendations
based on the user’s past history or the actions taken by other users
with respect to the currently displayed item.

In environments where the cost of consumption is low and recom-
mendation process is ongoing, the system can simply provide the user
with the recommended item. This is done by Jester, where the sys-
tem shows the user jokes and asks for ratings until the user decides
to leave [50]. Music recommenders such as Pandora also frequently do
this — Pandora starts playing the next song, and users can skip or
thumb-down the song if they don’t like it.

One specific aspect of communicating recommendations to users is
that of explaining why particular items were recommended. Recom-
mender systems are frequently “black boxes”, presenting recommenda-
tions to the user without any explanation of why the user might like
the recommended item. Explanations seem to be useful, however, for
helping the user be confident in the provided recommendations and to
make better decisions based on them [60].

6.3 Recommending in Conversation 153

Explanation methods can stem from a variety of goals.
Tintarev [144] identifies seven potential goals for explanations of recom-
mendations: transparency of the recommender algorithm, scrutability
of the results, trustworthiness of the recommendations, effectiveness for
supporting decisions, persuasiveness, efficiency of decision-making, and
satisfaction with the recommendation process.

User modelling work by Cook and Kay [32] demonstrated a means for
showing users the system’s model of them and showed that many users
were interested in this information. The earliest systematic evaluation of
recommender explanations was by Herlocker et al. [60]. While it did not
show a change in users’ enjoyment of recommended items based on expla-
nations, that study did document a significant user interest in explana-
tions of the recommendations they received.Bilgic andMooney [17] argue
that for many domains, user satisfaction with the item is more important
than whether they act on the recommendation: satisfaction and effective-
ness are more critical to evaluate than persuasiveness. A later focus group
study suggested that explanations canhelpwithuser satisfactionbyhelp-
ing them better know what to expect [145].

For other stakeholders the balance of explanatory goals can be dif-
ferent. An e-commerce site typically uses recommendations to increase
sales volume, increasing the importance of persuasion as a goal. This
has limits, however — if the system has a reputation for recommending
bad items it can lose trust with users and suffer in the long run.

Some work has been done on assessing the impact of the rec-
ommender interface on user reception of recommendations [54, 60].
Ultimately, however, this will likely have a good number of domain-
and system-specific attributes. Further, it is an example of one of the
aspects of recommender evaluation that cannot be done off-line: to mea-
sure user response to recommendation, it is necessary to test a system
with actual users.

6.3 Recommending in Conversation

Many recommender systems simply provide the user with a set of
recommendations or predictions, and the only feedback mechanism
provided to the user for refining future recommendations is the ability

154 User Experience

to rate (or purchase) more items. Conversational recommenders seek
to expand that, soliciting the user’s input to more accurately meet
their needs through an ongoing cycle of recommendation and feedback
(a conversation). In some ways, the resulting user experience is similar
to that of Grundy [123], in which the user could reject the suggested
book and receive a new suggestion. Conversational recommendation
has predominantly been explored in the context of case-based reasoning
systems [3, 46, 94] where recommendation is of a more content-based
than collaborative nature.

McGinty and Smyth [94] divide the kinds of feedback which are
solicited by various recommenders into four types: value elicitation,
where the user provides a specific value for some feature as a hard con-
straint (e.g., “built by Sony”); ratings, where the user provides ratings
for items; critique, where the user provides a specific correction to the
system’s recommendation (e.g., “like this, but with more megapixels”);
and preference, where the user selects the most desirable of the recom-
mended items and the system replies with more items similar to the
selected item.1

6.4 Recommending in Social Context

So far, the recommendation systems considered have all treated the user
as a single, independent entity who will consume the recommendation
without interaction with others. There has been work, however, on
making recommender systems aware of social contexts and connections
between users.

6.4.1 Group Recommenders

Group recommenders have the goal of recommending items to be expe-
rienced by a group of people, aiming to find an item (such as a movie
or travel destination) which all members will enjoy [92]. PolyLens pro-
vided movie recommendations to groups by using MoveLens’s user–user
collaborative filter to generate predictions for each user, producing the

1 Under this taxonomy, traditional ratings-based recommender systems become a special
case of conversational recommenders without an explicitly articulated recommend-refine
cycle.

6.4 Recommending in Social Context 155

group’s recommendations by merging the individual predictions using
the “principle of least misery”: the predicted preference for a movie
was the lowest preference predicted for any group member [107]. Users
enjoyed having the group recommendations, although there are privacy
tradeoffs as some information about users’ preferences can be inferred
by their fellow group members.

Jameson [66] describes a number of challenges in building group rec-
ommenders. First is preference collection: while PolyLens simply used
the ratings each user had previously provided, in some domains it can
be desirable to allow users to see each other’s stated preferences and/or
interact with each other around the preference-stating process. Second,
the preferences need to be aggregated and the recommendations pro-
duced.With user–userCFalgorithms, this can be done either by blending
individual recommendation lists for each user or by creating a compos-
ite pseudo-user for the group and generating recommendations for that
user [107]. In either of these cases, it is necessary to have some aggre-
gation function for combining preferences. O’Connor considered several
methods for PolyLens, including minimum preference, maximum pref-
erence, and average preference; Jameson points out that it is important
for this preference function to be non-manipulable so that no user can
manipulate the group’s recommendations by falsely stating their prefer-
ences. For his Travel Decision Forum system, he selected median as the
aggregation function. This requirement is important, as manipulability
has been a problem for deployed group recommenders. The initial trial of
theMusicFXsystemfor selectingfitness centerbackgroundmusic allowed
an individual to force a music change by giving the current music the min-
imum rating [92].

After the system has produced a set of recommendations for the
group, it needs to provide the group with those recommendations and,
in some cases, support the group as they finalize their decision. Jameson
spends some time on the nuances of facilitating group decision around
the resulting recommendation lists.

6.4.2 Incorporating Trust in Recommenders

Even when recommendations are intended for individual users, users
may have relationships with other users that can be used as an

156 User Experience

additional source of information in the recommendation process. This
is particularly the case with the rise of social networking, with extensive
data available about peoples’ connections to each other.

Various authors have proposed methods for integrating informa-
tion about user’s connections into recommender systems in the form of
“trust-based recommenders”. Massa and Avesani proposed a method
for using users’ statements of their trust in other users’ opinions to
weight user ratings by estimated trust rather than similarity in user–
user CF when producing predictions and recommendations and built a
ski mountaineering site around it [12, 91]. Golbeck [47] used a similar
integration method, based on a different trust estimation algorithm, for
movie recommendation.

Trust is a complicated concept, and representing and estimating it
computationally is difficult. While many systems have a good deal of
information about peoples’ connections, how those connections cor-
respond to trust in recommendation is not obvious. Even annotat-
ing the network with trust ratings is problematic, with confidence
and notions such as active distrust making a useful single “estimated
trust” value an elusive goal. There is continued work, however, on
various methods for estimating and propagating trust through social
networks [12, 47, 48, 114, 155]. Ziegler and Golbeck [154] found that
trust and conventional rating similarities are correlated. Guy et al. also
found that users tended to find recommendations of web sites, discus-
sion forums, and other social software artifacts more interesting when
they were recommended from the user’s social connections rather than
users with similar preference histories [54].

6.4.3 Recommending Social Connections

Some recommender projects have gone beyond recognizing that recom-
mendations are used in social contexts by using recommenders to alter
or enhance the structure of that social context — recommending social
connections or friends.

Kautz et al. [72] did early work in this direction, building the
Referral Web system that allowed users to query their social network;

6.5 Shaping User Experience with Recommendations 157

McDonald [93] extended these ideas by building a recommender for
individuals with particular expertise from the user’s social network or
organization. These systems enabled users to find people in their social
network or organization that could provide them with particular exper-
tise or otherwise meet a need they had.

Terveen and McDonald [143] provide a survey and overview of social
connection recommendation, covering information-need-based recom-
mendation such as that of Kautz et al. and McDonald as well as other
applications of social connection recommendation. Recent work has
focused on recommending connections in the contexts of online social
networks [28].

6.5 Shaping User Experience with Recommendations

The interaction between recommender systems and user experience
goes beyond providing a useful user experience around recommenda-
tions. Recommendations can also be used to alter user experience and
behavior. Cosley et al. [34] found that predictions influence user rat-
ing behavior, but there is interest in using recommender systems to
influence user behavior in broader contexts.

SuggestBot, an implementation of intelligent task routing, uses rec-
ommender algorithms to suggest pages that Wikipedia editors may
want to edit [33]. Intelligent task routing aims to help people do work
on community-maintained projects by guiding them to work that needs
to be done and which matches with their interests as inferred from prior
work history.

In online social networking tools, recommenders have been
successfully deployed to improve user experience and engagement. Rec-
ommending connections to existing users of IBM’s internal social net-
working site SocialBlue (formerly known as BeeHive) resulted in users
expanding their connections. Users’ social network information was
more useful for finding people they already knew on the system, but rec-
ommender algorithms based on similarity in user profile contents were
more effective at helping users discover new friends [28]. Recommending

158 User Experience

social connections and profile content to new users resulted in the users
being more active on the site [42].

Recommenders therefore have the potential not just to meet infor-
mation needs, but to shape and guide user behavior both on-line and
in the real world.

7
Conclusion and Resources

Recommender systems have become ubiquitous. People use them to
find books, music, news, smart phones, vacation trips, and romantic
partners. Nearly every product, service, or type of information has rec-
ommenders to help people select from among the myriad alternatives
the few they would most appreciate. Sustaining these commercial appli-
cations is a vibrant research community, with creative interaction ideas,
powerful new algorithms, and careful experiments. Still, there are many
challenges for the field, especially at the interaction between research
and commercial practice. We have framed these challenges here in a
five part taxonomy.

Algorithms: Recommender systems researchers have developed a
suite of highly effective algorithms for the basic problem of
recommending a set of substitutable goods from a large popu-
lation of similar goods to individual users. There are however
many remaining algorithmic challenges, most involving richer
sets of data about the users, the items, the interactions between
the users and the items, or the relationships among groups of
users or groups of items. For instance, how can such sources

159

160 Conclusion and Resources

as Amazon reviews and Twitter posts about items be incorpo-
rated into recommendations. We expect to see a wide variety
of approaches, but are particularly optimistic about algorithms
that generalize to process multiple parallel matrices of user and
item data simultaneously.

Data: The data used by recommender systems are sometimes biased in
unexpected ways that can have a dramatic effect on outcomes.
For instance, in designing algorithms for selecting items for new
users to rate in MovieLens we found that the original Movie-
Lens algorithm, which was performing poorly in practice, nearly
always scored higher in offline tests than the newer algorithms
we were designing. The reason is that since new users had been
using the original algorithm for years, the dataset we were using
for offline testing was much more likely to have a rating for items
chosen by that algorithm than by any new algorithm. Similarly,
nearly all rating data sets are strongly biased toward high rat-
ings, because users are careful to only choose to consume items
they suspect they will like. This class of problems is challeng-
ing to solve in general, but there are some elegant approaches
emerging for specific instances. For instance, researchers have
shown that datasets can be effectively statistically unbiased for
some popularity biases [88].

User experience: The goal of recommender systems is to improve
user experience. In both research and practice, crafting the user
experience to fit the application and the user lifecycle remains
a substantial challenge. One challenge is to adapt the nature
of recommendations as the user gains more experience with
the recommender — a new user may need more verifiable
recommendations and may lack the trust needed for high-
risk recommendations. A similar challenge is how to balance
serving the individual now (with the best available recommen-
dation) vs. serving the individual and community long-term
(with recommendations that help the recommender system
learn). These challenges vary with different domains, and par-
ticularly with different usage patterns. Part of the research
challenge is to design interfaces that give users control over

161

the recommendation process without overwhelming the user or
rendering the tool too complicated for novice users.

Evaluation and metrics: Evaluation of recommender systems has
advanced significantly over the past decade, but many chal-
lenges remain. Even with a better understanding of the rela-
tionships among different algorithm performance metrics, the
field struggles to standardize evaluation. As a result, too often
research results are incomparable with prior published results,
even when based on the same data sets. Examples of this prob-
lem include the lack of standard treatment of items for which
the recommender is unable to make a prediction. The broader
goal of user-centered holistic evaluation, including A/B testing
of the short- and long-term effects of recommendation differ-
ences, is still met by only a few research groups and companies
that have the live systems and resources for such evaluation.
Deploying innovative recommenders is still too hard, and there
is a substantial need for research platforms where innovations
can be tested without first building up a community of thou-
sands of users.

Social impact: Because collaborative filtering recommender systems
must by their nature collect substantial personalized data about
their users, they face important privacy and security challenges.
Researchers have been approaching these challenges head-on
by attempting to develop ways to collect and store data in
such a way that extracting personalized data is provably dif-
ficult. Recommender systems also have some unique commu-
nity challenges. One such challenge is about the relationship
between the recommender system and its community of users.
How do the users know that the recommender system is pro-
viding honest recommendations? Furthermore, the existence of
the recommender may influence the structure of the commu-
nity over time. If users are choosing items to read based on
personalized recommendations, over time they may cluster into
groups of like-minded individuals, balkanizing the community
into groups who seldom interact with people with whom they do
not agree. We hope in the future to see recommender systems

162 Conclusion and Resources

that explicitly react to combat this type of damage to the com-
munity structure, ensuring that not only individuals, but also
the surrounding community benefit from the existence of the
recommender.

7.1 Resources

Given the broad application of recommenders and the substantial set
of open problems, the field of recommender systems research promises
to remain active for years to come. We conclude this survey with a
brief review of resources we feel would be useful for both academic and
industrial explorations of recommender systems.

Publication venues: Recommender systems research continues to
progress rapidly, with many papers appearing each year in
venues including: ACM Recommender Systems (RecSys) User
Modeling, Adaptation and Personalization (UMAP) ACM
Conference on Human Factors in Computing Systems (CHI)
ACM Conference on Computer-Supported Cooperative Work
(CSCW) ACM Conference on Information Retrieval (SIGIR)
ACM Conference on Knowledge Discovery and Data Mining
(KDD) ACM Transactions on Information Systems User Mod-
eling and User-Adapted Interaction and many other workshops,
conferences, and journals.

Software implementations: There are a variety of collaborative fil-
tering implementations available and ready for use in projects,
many under open source licenses, including the following:

• LensKit by GroupLens Resesarch, Java.
http://lenskit.grouplens.org

• MyMediaLite by MyMedia at University of Hildesheim,
C#/.NET.
http://www.ismll.uni-hildesheim.de/

mymedialite/

• easyrec, Java with RESTful HTTP API. http://

easyrec.org

7.1 Resources 163

• Mahout Taste by the Apache project, Java.
http://mahout.apache.org/

• Cofi by Daniel Lemire et al., Java. http://www.

nongnu.org/cofi/

• SUGGEST by George Karypis, binary-only, C API.
http://glaros.dtc.umn.edu/gkhome/suggest/

download

Data sets: For evaluating and tuning recommender performance,
commonly-used, readily-available data sets include the
following:

• MovieLens: movie ratings (100 K, 1 M, and 10 M ratings
sets, the latter includes 100 K tag applications). With
the availability of larger data sets, we do not recom-
mend using the 100 K for other than development and
preliminary testing; larger data sets will provide more
robust validation of algorithms.
http://www.grouplens.org/node/73

• Jester: ratings of jokes.
http://eigentaste.berkeley.edu/dataset/

• BookCrossing: book ratings with user demographic
information.
http://www.informatik.uni-freiburg.de/

˜cziegler/BX/

• WebScope — Yahoo! provides a number of web user
behavior data sets from various Yahoo! services through
their WebScope program.
http://webscope.sandbox.yahoo.com

• RecLab — RichRelevance provides a recommendation
evaluation framework and simulated data set for evalu-
ating recommender performance for e-commerce.
http://code.richrelevance.com/reclab.

Work on this survey was funded by the National Science Foundation under grant IIS
05-34939.

References

[1] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions,” IEEE
Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734–749,
2005.

[2] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning user interaction
models for predicting web search result preferences,” in ACM SIGIR ’06,
pp. 3–10, ACM, 2006.

[3] D. Aha and L. Breslow, “Refining conversational case libraries,” in Case-Based
Reasoning Research and Development, vol. 1266 of Lecture Notes in Computer
Science, pp. 267–278, Springer, 1997.

[4] K. Ali and W. van Stam, “TiVo: Making show recommendations using a dis-
tributed collaborative filtering architecture,” in ACM KDD ’04, pp. 394–401,
ACM, 2004.

[5] X. Amatriain, J. Pujol, and N. Oliver, “I like it. . . I like it not: Evaluating user
ratings noise in recommender systems,” in UMAP 2009, vol. 5535 of Lecture
Notes in Computer Science, pp. 247–258, Springer, 2009.

[6] X. Amatriain, J. M. Pujol, N. Tintarev, and N. Oliver, “Rate it again:
Increasing recommendation accuracy by user re-rating,” in ACM RecSys ’09,
pp. 173–180, ACM, 2009.

[7] Amazon.com, “Q4 2009 Financial Results,” Earnings Report Q4-2009,
January 2010.

[8] E. Am̈eur, G. Brassard, J. Fernandez, and F. M. Onana, “Alambic: A
privacy-preserving recommender system for electronic commerce,” Interna-
tional Journal of Information Security, vol. 7, no. 5, pp. 307–334, October
2008.

164

References 165

[9] T. Amoo and H. H. Friedman, “Do numeric values influence subjects’
responses to rating scales?,” Journal of International Marketing and Mar-
keting Research, vol. 26, pp. 41–46, February 2001.

[10] A. Ansari, S. Essegaier, and R. Kohli, “Internet recommendation systems,”
Journal of Marketing Research, vol. 37, no. 3, pp. 363–375, August 2000.

[11] C. Avery and R. Zeckhauser, “Recommender systems for evaluating computer
messages,” Communications of the ACM, vol. 40, no. 3, pp. 88–89, ACM ID:
245127, March 1997.

[12] P. Avesani, P. Massa, and R. Tiella, “A trust-enhanced recommender system
application: Moleskiing,” in ACM SAC ’05, pp. 1589–1593, ACM, 2005.

[13] M. Balabanović and Y. Shoham, “Fab: Content-based, collaborative recom-
mendation,” Communications of the ACM, vol. 40, no. 3, pp. 66–72, 1997.

[14] R. M. Bell and Y. Koren, “Scalable collaborative filtering with jointly derived
neighborhood interpolation weights,” in IEEE ICDM 2007, pp. 43–52, 2007.

[15] J. Bennett and S. Lanning, “The netflix prize,” in KDD Cup and Workshop
’07, 2007.

[16] M. W. Berry, S. T. Dumais, and G. W. O’Brien, “Using linear algebra for
intelligent information retrieval,” SIAM Review, vol. 37, no. 4, pp. 573–595,
December 1995.

[17] M. Bilgic and R. J. Mooney, “Explaining recommendations: Satisfaction vs.
promotion,” in Beyond Personalization 2005: A Workshop on the Next Stage
of Recommender Systems Research, pp. 13–18, 2005.

[18] D. Billsus and M. J. Pazzani, “Learning collaborative information filters,” in
AAAI 2008 Workshop on Recommender Systems, 1998.

[19] D. Billsus and M. J. Pazzani, “A personal news agent that talks, learns and
explains,” in AGENTS ’99, pp. 268–275, ACM, 1999.

[20] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal
of Machine Learning Research, vol. 3, pp. 993–1022, March 2003.

[21] M. Brand, “Fast online svd revisions for lightweight recommender systems,”
in SIAM International Conference on Data Mining, pp. 37–46, SIAM, 2003.

[22] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive
algorithms for collaborative filtering,” in UAI 1998, pp. 43–52, AAAI, 1998.

[23] P. Brusilovsky, “Methods and techniques of adaptive hypermedia,” User Mod-
eling and User-Adapted Interaction, vol. 6, no. 2, pp. 87–129, July 1996.

[24] R. Burke, “Hybrid recommender systems: Survey and experiments,” User
Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 331–370, November
2002.

[25] R. Burke, “Evaluating the dynamic properties of recommendation
algorithms,” in ACM RecSys ’10, pp. 225–228, ACM, 2010.

[26] J. Canny, “Collaborative filtering with privacy,” in IEEE Symposium on Secu-
rity and Privacy 2002, pp. 45–57, IEEE Computer Society, 2002.

[27] J. Canny, “Collaborative filtering with privacy via factor analysis,” in ACM
SIGIR ’02, pp. 238–245, ACM, 2002.

[28] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy, “Make new friends, but
keep the old: Recommending people on social networking sites,” in ACM CHI
’09, pp. 201–210, ACM, 2009.

166 References

[29] L. Chen and P. Pu, “Evaluating critiquing-based recommender agents,” in
AAAI 2006, vol. 21, pp. 157–162, AAAI, 2006.

[30] Y. H. Chien and E. I. George, “A bayesian model for collaborative filtering,”
in 7th International Workshop on Artificial Intelligence and Statistics, 1999.

[31] B. H. Clark, “Marketing performance measures: History and interrelation-
ships,” Journal of Marketing Management, vol. 15, no. 8, pp. 711–732,
November 1999.

[32] R. Cook and J. Kay, “The justified user model: A viewable, explained user
model,” in User Modelling 1994, 1994.

[33] D. Cosley, D. Frankowski, L. Terveen, and J. Riedl, “SuggestBot: using intel-
ligent task routing to help people find work in wikipedia,” in ACM IUI ’07,
pp. 32–41, ACM, 2007.

[34] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and J. Riedl, “Is seeing believ-
ing?: How recommender system interfaces affect users’ opinions,” in ACM
CHI ’03, pp. 585–592, ACM, 2003.

[35] B. Dahlen, J. Konstan, J. Herlocker, N. Good, A. Borchers, and J. Riedl,
“Jump-starting MovieLens: User benefits of starting a collaborative filtering
system with ‘dead data,” Technical Report 98-017, University of Minnesota,
Minneapolis, MN, March, 1998.

[36] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man, “Indexing by latent semantic analysis,” Journal of the American Society
for Information Science, vol. 41, no. 6, pp. 391–407, 1990.

[37] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38, ArticleType:
research-article/Full publication date: 1977/Copyright c© 1977 Royal Statis-
tical Society, Janaury 1977.

[38] M. Deshpande and G. Karypis, “Item-based top-N recommendation algo-
rithms,” ACM Transactions on Information Systems, vol. 22, no. 1,
pp. 143–177, 2004.

[39] M. D. Ekstrand, P. Kannan, J. A. Stemper, J. T. Butler, J. A. Konstan,
and J. T. Riedl, “Automatically building research reading lists,” in ACM
RecSys ’10, pp. 159–166, ACM, 2010.

[40] B. Fields, C. Rhodes, and M. d’Inverno, “Using song social tags and topic
models to describe and compare playlists,” in Workshop on Music Recom-
mendation and Discovery 2010, 633, CEUR, September 2010.

[41] D. Frankowski, D. Cosley, S. Sen, L. Terveen, and J. Riedl, “You are what
you say: Privacy risks of public mentions,” in ACM SIGIR ’06, pp. 565–572,
ACM, 2006.

[42] J. Freyne, M. Jacovi, I. Guy, and W. Geyer, “Increasing engagement through
early recommender intervention,” in ACM RecSys ’09, pp. 85–92, ACM, 2009.

[43] H. H. Friedman and T. Amoo, “Rating the rating scales,” Journal of Marketing
Management, vol. 9, no. 3, pp. 114–123, 1999.

[44] S. Funk, “Netflix update: Try this at home,” http://sifter.org/˜
simon/journal/20061211.html, Archived by WebCite at http://www. webc-
itation.org/5pVQphxrD, December 2006.

References 167

[45] R. Garland, “The mid-point on a rating scale: Is it desirable?,” Marketing
Bulletin, vol. 2, pp. 66–70, May 1991.

[46] M. Göker and C. Thompson, “Personalized conversational case-based recom-
mendation,” in Advances in Case-Based Reasoning, vol. 1898 of Leceture Notes
in Computer Science, pp. 29–82, Springer, 2000.

[47] J. Golbeck, “Generating predictive movie recommendations from trust in
social networks,” in International Conference on Trust Management, vol. 3986
of Lecture Notes in Computer Science, pp. 93–104, Springer, 2006.

[48] J. Golbeck, “Trust on the World Wide Web: A survey,” Foundations and
Trends� in Web Science, vol. 1, no. 2, pp. 131–197, 2006.

[49] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filter-
ing to weave an information tapestry,” Communications of the ACM, vol. 35,
no. 12, pp. 61–70, 1992.

[50] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant
time collaborative filtering algorithm,” Information Retrieval, vol. 4, no. 2,
pp. 133–151, July 2001.

[51] G. Gorrell, “Generalized Hebbian algorithm for incremental singular value
decomposition in natural language processing,” in EACL 2006, pp. 97–104,
ACL, 2006.

[52] M. Grigoriev, “Intelligent multimedia management system,” 2003.
[53] A. Gunawardana and G. Shani, “A survey of accuracy evaluation metrics

of recommendation tasks,” Journal of Machine Learning Research, vol. 10,
pp. 2935–2962, 2009.

[54] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and S. Ofek-
Koifman, “Personalized recommendation of social software items based on
social relations,” in ACM RecSys ’09, pp. 53–60, ACM, 2009.

[55] D. L. Hansen and J. Golbeck, “Mixing it up: Recommending collections of
items,” in ACM CHI ’09, pp. 1217–1226, ACM, 2009.

[56] F. M. Harper, X. Li, Y. Chen, and J. A. Konstan, “An economic model
of user rating in an online recommender system,” in User Modeling 2005,
vol. 3538 of Lecture Notes in Computer Science, pp. 307–316, Springer, August
2005.

[57] D. A. Harrison and K. J. Klein, “What’s the difference? Diversity constructs
as separation, variety, or disparity in organizations,” Academy of Management
Review, vol. 32, no. 4, pp. 1199–1228, Oct 2007.

[58] J. Herlocker, J. A. Konstan, and J. Riedl, “An empirical analysis of design
choices in neighborhood-based collaborative filtering algorithms,” Information
Retrieval, vol. 5, no. 4, pp. 287–310, 2002.

[59] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorith-
mic framework for performing collaborative filtering,” in ACM SIGIR ’99,
pp. 230–237, ACM, 1999.

[60] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative filtering
recommendations,” in ACM CSCW ’00, pp. 241–250, ACM, 2000.

[61] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating
collaborative filtering recommender systems,” ACM Transactions on Infor-
mation Systems, vol. 22, no. 1, pp. 5–53, 2004.

168 References

[62] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recommending and evalu-
ating choices in a virtual community of use,” in ACM CHI ’95, pp. 194–201,
ACM Press/Addison-Wesley Publishing Co., 1995.

[63] W. Hill and L. Terveen, “Using frequency-of-mention in public conversations
for social filtering,” in ACM CSCW ’96, pp. 106–112, ACM, 1996.

[64] T. Hofmann, “Probabilistic latent semantic indexing,” in ACM SIGIR ’99,
pp. 50–57, ACM, 1999.

[65] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM Trans-
actions on Information Systems, vol. 22, no. 1, pp. 89–115, 2004.

[66] A. Jameson, “More than the sum of its members: Challenges for group rec-
ommender systems,” in Working Conference on Advanced Visual Interfaces,
pp. 48–54, ACM, 2004.

[67] X. Jin, Y. Zhou, and B. Mobasher, “Web usage mining based on probabilistic
latent semantic analysis,” in ACM KDD ’04, pp. 197–205, ACM, 2004.

[68] D. Kahneman, P. P. Wakker, and R. Sarin, “Back to bentham? Explorations
of experienced utility,” The Quarterly Journal of Economics, vol. 112, no. 2,
pp. 375–405, ArticleType: research-article/Issue Title: In Memory of Amos
Tversky (1937–1996)/Full publication date: May, 1997/Copyright c© 1997 The
MIT Press, May 1997.

[69] J. Karlgren, “Newsgroup clustering based on user behavior — a recommen-
dation algebra,” Technical Report, European Research Consortium for Infor-
matics and Mathematics at SICS, 1994.

[70] K. Karvonen, S. Shibasaki, S. Nunes, P. Kaur, and O. Immonen, “Visual
nudges for enhancing the use and produce of reputation information,” in
Workshop on User-Centric Evaluation of Recommender Systems and Their
Interfaces, September 2010.

[71] G. Karypis, “Evaluation of item-based top-N recommendation algorithms,” in
ACM CIKM ’01, pp. 247–254, ACM, 2001.

[72] H. Kautz, B. Selman, and M. Shah, “Referral Web: Combining social net-
works and collaborative filtering,” Communications of the ACM, vol. 40, no. 3,
pp. 63–65, 1997.

[73] B. Kitts, D. Freed, and M. Vrieze, “Cross-sell: A fast promotion-tunable
customer-item recommendation method based on conditionally independent
probabilities,” in ACM KDD ’00, pp. 437–446, ACM, 2000.

[74] B. P. Knijnenburg, L. Schmidt-Thieme, and D. G. Bollen, “Workshop on
user-centric evaluation of recommender systems and their interfaces,” in ACM
RecSys ’10, p. 383, ACM, 2010.

[75] A. Kobsa, “Privacy-enhanced web personalization,” in The Adaptive Web,
pp. 628–670, Springer, 2007.

[76] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guide to controlled
experiments on the web: Listen to your customers not to the HiPPO,” in ACM
KDD ’07, pp. 959–967, ACM, ACM ID: 1281295, 2007.

[77] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, “Controlled
experiments on the web: Survey and practical guide,” Data Mining and
Knowledge Discovery, vol. 18, no. 1, pp. 140–181, 2008.

References 169

[78] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl, “GroupLens: applying collaborative filtering to Usenet news,” Com-
munications of the ACM, vol. 40, no. 3, pp. 77–87, 1997.

[79] Y. Koren, “Factorization meets the neighborhood: A multifaceted collabora-
tive filtering model,” in ACM KDD ’08, pp. 426–434, ACM, 2008.

[80] Y. Koren, “Collaborative filtering with temporal dynamics,” Communications
of the ACM, vol. 53, no. 4, pp. 89–97, 2010.

[81] M. Kurucz, A. A. Benczúr, and K. Csalogány, “Methods for large scale SVD
with missing values,” in KDD Cup and Workshop 2007, August 2007.

[82] S. K. Lam and J. Riedl, “Shilling recommender systems for fun and profit,”
in ACM WWW ’04, pp. 393–402, ACM, 2004.

[83] T. Landgrebe, P. Paclik, R. Duin, and A. Bradley, “Precision-recall operating
characteristic (P-ROC) curves in imprecise environments,” in ICPR 2006,
pp. 123–127, IEEE Computer Society, 2006.

[84] N. Lathia, “Evaluating Collaborative Filtering Over Time,” PhD thesis, Uni-
versity College London, London, UK, June, 2010.

[85] N. Lathia, S. Hailes, and L. Capra, “Evaluating collaborative filtering over
time,” in SIGIR 09 Workshop on the Future of IR Evaluation, July 2009.

[86] N. Lathia, S. Hailes, and L. Capra, “Temporal collaborative filtering with
adaptive neighbourhoods,” in ACM SIGIR ’09, pp. 796–797, ACM, 2009.

[87] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-
to-item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1,
pp. 76–80, 2003.

[88] B. M. Marlin and R. S. Zemel, “Collaborative prediction and ranking with
non-random missing data,” in ACM RecSys ’09, pp. 5–12, ACM, 2009.

[89] B. M. Marlin, R. S. Zemel, S. Roweis, and M. Slaney, “Collaborative filter-
ing and the missing at random assumption,” in UAI ’07, pp. 50–54, AUAI,
2007.

[90] F. J. Martin, “RecSys ’09 industrial keynote: Top 10 lessons learned developing
deploying and operating real-world recommender systems,” in ACM RecSys
’09, pp. 1–2, ACM, 2009.

[91] P. Massa and P. Avesani, “Trust-Aware collaborative filtering for recom-
mender systems,” in On the Move to Meaningful Internet Systems 2004:
CoopIS, DOA, and ODBASE, vol. 3290 of Lecture Notes in Computer Sci-
ence, pp. 275–301, Springer, 2004.

[92] J. F. McCarthy and T. D. Anagnost, “MusicFX: an arbiter of group prefer-
ences for computer supported collaborative workouts,” in ACM CSCW ’98,
pp. 363–372, ACM, 1998.

[93] D. W. McDonald, “Evaluating expertise recommendations,” in ACM GROUP
’01, pp. 214–223, ACM, ACM ID: 500319, 2001.

[94] L. McGinty and B. Smyth, “Adaptive selection: An analysis of critiquing and
preference-based feedback in conversational recommender systems,” Interna-
tional Journal of Electronic Commerce, vol. 11, no. 2, pp. 35–57, 2006.

[95] M. R. McLaughlin and J. L. Herlocker, “A collaborative filtering algorithm
and evaluation metric that accurately model the user experience,” in ACM
SIGIR ’04, pp. 329–336, Sheffield, United Kingdom: ACM, 2004.

170 References

[96] S. McNee, S. Lam, J. Konstan, and J. Riedl, “Interfaces for eliciting new
user preferences in recommender systems,” in User Modeling 2003, vol. 2702,
pp. 178–187, Springer, 2003.

[97] S. M. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, S. K. Lam, A. M. Rashid,
J. A. Konstan, and J. Riedl, “On the recommending of citations for research
papers,” in ACM CSCW ’02, pp. 116–125, ACM, 2002.

[98] S. M. McNee, J. Riedl, and J. A. Konstan, “Being accurate is not enough:
How accuracy metrics have hurt recommender systems,” in ACM CHI ’06
Extended Abstracts, pp. 1097–1101, ACM, 2006.

[99] S. M. McNee, J. Riedl, and J. A. Konstan, “Making recommendations better:
An analytic model for human-recommender interaction,” in ACM CHI ’06
Extended Abstracts, pp. 1103–1108, ACM, 2006.

[100] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl, “Movie-
Lens unplugged: Experiences with an occasionally connected recommender
system,” in ACM IUI ’03, pp. 263–266, ACM, 2003.

[101] B. N. Miller, J. A. Konstan, and J. Riedl, “PocketLens: Toward a personal
recommender system,” ACM Transactions on Information Systems, vol. 22,
no. 3, pp. 437–476, 2004.

[102] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Toward trust-
worthy recommender systems: An analysis of attack models and algorithm
robustness,” ACM Transactions on Internet Technology, vol. 7, no. 4, p. 23,
2007.

[103] B. Mobasher, R. Burke, and J. Sandvig, “Model-based collaborative filtering
as a defense against profile injection attacks,” in AAAI 2006, pp. 1388–1393,
AAAI, 2006.

[104] M. Morita and Y. Shinoda, “Information filtering based on user behavior
analysis and best match text retrieval,” in ACM SIGIR ’94, pp. 272–281,
Springer-Verlag, 1994.

[105] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse
datasets,” in IEEE Symposium on Security and Privacy 2008, pp. 111–125,
IEEE Computer Society, 2008.

[106] D. Oard and J. Kim, “Implicit feedback for recommender systems,” in AAAI
Workshop on Recommender Systems, Madison, Wisconsin, 1998.

[107] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl, “PolyLens: a recom-
mender system for groups of users,” in ECSCW 2001, pp. 199–218, Kluwer
Academic Publishers, 2001.

[108] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre, “Collaborative rec-
ommendation: A robustness analysis,” ACM Transactions on Internet Tech-
nology, vol. 4, no. 4, pp. 344–377, 2004.

[109] M. P. O’Mahony, N. J. Hurley, and G. C. Silvestre, “Detecting noise in rec-
ommender system databases,” in ACM IUI ’06, pp. 109–115, ACM, 2006.

[110] A. Paterek, “Improving regularized singular value decomposition for collabo-
rative filtering,” in KDD Cup and Workshop 2007, August 2007.

[111] D. M. Pennock, E. Horvits, and C. L. Giles, “Social choice theory and rec-
ommender systems: Analysis of the axiomatic foundations of collaborative
filtering,” in AAAI 2000, AAAI, 2000.

References 171

[112] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles, “Collaborative filter-
ing by personality diagnosis: A hybrid memory-and model-based approach,”
in UAI 2000, pp. 473–480, AUAI, 2000.

[113] H. Polat and W. Du, “SVD-based collaborative filtering with privacy,” in
ACM SAC ’05, pp. 791–795, ACM, 2005.

[114] A. Popescul, L. H. Ungar, D. M. Pennock, and S. Lawrence, “Probabi-
listic models for unified collaborative and content-based recommendation in
sparse-data environments,” in UAI 2001, pp. 437–444, Morgan Kaufmann
Publishers Inc., 2001.

[115] G. Potter, “Putting the collaborator back into collaborative filtering,” in KDD
Workshop on Large-Scale Recommender Systems and the Netflix Prize Com-
petition, pp. 1–4, ACM, 2008.

[116] N. Ramakrishnan, B. Keller, B. Mirza, A. Grama, and G. Karypis, “Privacy
risks in recommender systems,” IEEE Internet Computing, vol. 5, no. 6,
pp. 54–63, 2001.

[117] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Kon-
stan, and J. Riedl, “Getting to know you: Learning new user preferences in
recommender systems,” in ACM IUI ’02, pp. 127–134, ACM, 2002.

[118] J. Reilly, J. Zhang, L. McGinty, P. Pu, and B. Smyth, “Evaluating compound
critiquing recommenders: A real-user study,” in ACM EC ’07, pp. 114–123,
ACM, ACM ID: 1250929, 2007.

[119] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grou-
pLens: an open architecture for collaborative filtering of netnews,” in ACM
CSCW ’94, pp. 175–186, ACM, 1994.

[120] P. Resnick and R. Sami, “The influence limiter: Provably manipulation-
resistant recommender systems,” in ACM RecSys ’07, pp. 25–32, ACM, 2007.

[121] P. Resnick and R. Sami, “The information cost of manipulation-resistance in
recommender systems,” in ACM RecSys ’08, pp. 147–154, ACM, 2008.

[122] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, eds., Recommender Systems
Handbook. Springer, 2010.

[123] E. Rich, “User modeling via stereotypes,” Cognitive Science, vol. 3, no. 4,
pp. 329–354, October 1979.

[124] C. J. V. Rijsbergen, Information Retrieval. Butterworth-Heinemann, 1979.
[125] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann machines

for collaborative filtering,” in ACM ICML ’07, pp. 791–798, ACM, 2007.
[126] G. Salton, “The state of retrieval system evaluation,” Information Processing

and Management, vol. 28, no. 4, pp. 441–449, July 1992.
[127] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedfor-

ward neural network,” Neural Networks, vol. 2, no. 6, pp. 459–473, 1989.
[128] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of recommen-

dation algorithms for e-commerce,” in ACM EC ’00, pp. 158–167, ACM, ACM
ID: 352887, 2000.

[129] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Incremental SVD-based
algorithms for highly scaleable recommender systems,” in ICCIT 2002, 2002.

[130] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl, “Item-based collabora-
tive filtering recommendation algorithms,” in ACM WWW ’01, pp. 285–295,
ACM, 2001.

172 References

[131] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl, “Application
of dimensionality reduction in recommender system — a case study,” in
WebKDD 2000, 2000.

[132] J. B. Schafer, J. A. Konstan, and J. Riedl, “E-Commerce recommenda-
tion applications,” Data Mining and Knowledge Discovery, vol. 5, no. 1,
pp. 115–153, Janaury 2001.

[133] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods and
metrics for cold-start recommendations,” in ACM SIGIR ’02, pp. 253–260,
ACM, 2002.

[134] S. Sen, F. M. Harper, A. LaPitz, and J. Riedl, “The quest for quality tags,”
in ACM GROUP ’07, pp. 361–370, ACM, 2007.

[135] G. Shani and A. Gunawardana, “Evaluating recommendation systems,” in
Recommender Systems Handbook, (F. Ricci, L. Rokach, B. Shapira, and P. B.
Kantor, eds.), pp. 257–297, Springer, 2010.

[136] G. Shani, D. Heckerman, and R. I. Brafman, “An MDP-based recommender
system,” Journal of Machine Learning Research, vol. 6, pp. 1265–1295, 2005.

[137] U. Shardanand and P. Maes, “Social information filtering: Algorithms for
automating “word of mouth”,” in ACM CHI ’95, pp. 210–217, ACM
Press/Addison-Wesley Publishing Co., 1995.

[138] R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J. Hubaux, “Preserving
privacy in collaborative filtering through distributed aggregation of offline
profiles,” in ACM RecSys ’09, pp. 157–164, ACM, 2009.

[139] B. Smyth, “Case-based recommendation,” in The Adaptive Web, vol. 4321 of
Lecture Notes in Computer Science, (P. Brusilovsky, A. Kobsa, and W. Nejdl,
eds.), pp. 342–376, Springer, 2007.

[140] X. Su and T. Khoshgoftaar, “A survey of collaborative filtering techniques,”
Advances in Artificial Intelligence, vol. 2009, p. 19, August 2009.

[141] K. Swearingen and R. Sinha, “Interaction design for recommender systems,”
in DIS 2002, ACM, 2002.

[142] J. A. Swets, “Information retrieval systems,” Science, vol. 141, no. 3577,
pp. 245–250, July 1963.

[143] L. Terveen and D. W. McDonald, “Social matching: A framework and research
agenda,” ACM Transactions on Computer-Human Interaction, vol. 12, no. 3,
pp. 401–434, ACM ID: 1096740, September 2005.

[144] N. Tintarev, “Explanations of recommendations,” in ACM RecSys ’07,
pp. 203–206, ACM, 2007.

[145] N. Tintarev and J. Masthoff, “Effective explanations of recommendations:
User-centered design,” in ACM RecSys ’07, pp. 153–156, ACM, 2007.

[146] R. Torres, S. M. McNee, M. Abel, J. A. Konstan, and J. Riedl, “Enhancing
digital libraries with TechLens+,” in ACM/IEEE JCDL ’04, pp. 228–236,
ACM, 2004.

[147] M. van Alstyne and E. Brynjolfsson, “Global village or cyber-balkans? Mod-
eling and measuring the integration of electronic communities,” Management
Science, vol. 51, no. 6, pp. 851–868, June 2005.

[148] P. Viappiani and C. Boutilier, “Regret-based optimal recommendation sets
in conversational recommender systems,” in ACM RecSys ’09, pp. 101–108,
ACM, 2009.

References 173

[149] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior. Princeton, NJ: Princeton University Press, 1944.

[150] G. Walsh and J. Golbeck, “Curator: A game with a purpose for collection
recommendation,” in ACM CHI ’10, pp. 2079–2082, ACM, ACM ID: 1753643,
2010.

[151] P. M. West, D. Ariely, S. Bellman, E. Bradlow, J. Huber, E. Johnson, B. Kahn,
J. Little, and D. Schkade, “Agents to the Rescue?,” Marketing Letters, vol. 10,
no. 3, pp. 285–300, 1999.

[152] M. Xie, L. V. S. Lakshmanan, and P. T. Wood, “Breaking out of the box of
recommendations: From items to packages,” in ACM RecSys ’10, pp. 151–158,
ACM, ACM ID: 1864739, 2010.

[153] Y. Yang and X. Liu, “A re-examination of text categorization methods,” in
ACM SIGIR ’99, pp. 42–49, ACM, 1999.

[154] C. Ziegler and J. Golbeck, “Investigating interactions of trust and interest
similarity,” Decision Support Systems, vol. 43, no. 2, pp. 460–475, March 2007.

[155] C. Ziegler and G. Lausen, “Propagation models for trust and distrust in
social networks,” Information Systems Frontiers, vol. 7, no. 4, pp. 337–358,
December 2005.

[156] C. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving recom-
mendation lists through topic diversification,” in ACM WWW ’05, pp. 22–32,
ACM, 2005.

[157] P. Zigoris and Y. Zhang, “Bayesian adaptive user profiling with explicit &
implicit feedback,” in ACM CIKM ’06, pp. 397–404, ACM, 2006.

